
Integrated Planning, Execution and Goal Reasoning for Python

Rich Levinson
BrainAid.com

rich@brainaid.com

Abstract
Integrated planning and execution systems often combine a plan-
ner using a declarative action representation with an execution
system which uses a procedural "reactive" representation. This
action representation mismatch creates a language barrier result-
ing in computational friction for transitions between planning and
execution. It may limit the scope of the planner's model or restrict
execution system flexibility, and lead to inflexible transitions and
division of labor between planning and execution.
 We present a library for embedding unified planning and exe-
cution, with goal reasoning, into Python code. The library extends
Python to include choice points and a goalstack, and provides a
message-based interface between domain level Python code and
supervisory meta-reasoning processes. The supervisory processes
search a space of program variations defined by choice points and
manage flexible transitions between execution and planning. The
planner and the execution system share the same Python proce-
dures extended with choice points as their action representation.
They exchange choice point rules which inform each other of
their choices and goal success or failure outcomes.

Motivation
 Neuropsychological models of human executive func-
tions are a key motivation for our model of integrated
planning and execution. We are inspired by the fact that in
humans, planning and execution activate the same neural
circuits. There are not separate circuits for planning and
executing the same behavior. We interpret that as planning
and execution sharing the same activity model (neural cir-
cuits for people, and software for machines). We aim to
model complex actions and behaviors with the full proce-
dural expressiveness of modern general-purpose program-
ming languages (the most expressive action representations
we are aware of).
 Our approach aspires to approximate the way planning
and execution are integrated in human executive functions
(Levinson 1994; Levinson 1995b; Levinson 1995c). Our
company has helped hundreds of patients with a wide
range of executive function disorders to maximize their
autonomy (Levinson 1997; Levinson et al 2007, Modayil
et al. 2008, Levinson et al 2009; Chu et. al., 2012;). This
experience and extensive neuropsychological research
(Barkley 2012; Lezak et al. 2012) provide strong evidence
that human autonomy relies on fluid transitions and dy-
namic balancing between planning and execution. Imbal-
ances take many forms, ranging from inattentive and inac-
tive, to highly distractible, impulsive and reactive, to
obsessive-compulsive.
 This work is part of an ongoing effort to understand au-

tonomy as a dynamic balancing act between planning and
reaction. We are interested in exploring the kind of balance
between planning and execution which is a hallmark of the
healthy executive functions required for human autonomy.
Of particular interest is the case when the execution system
has some level of default reactive competence and doesn't
strictly require the planner for every situation. Given
enough time, one can usually improve hardwired reactions
to cover more situations, but what is the best division of
labor between reflexive reaction and deliberation, and does
it change in different situations?
 Autonomous systems which integrate planning with
reactive execution often use different action representa-
tions for the planning and execution components. For ex-
ample, NASA has developed systems combining declara-
tive Mixed Integer Program formulation with procedural
PLEXIL execution (Aaseng et al. 2018; Levinson 2019).
Other systems such as ROSplan provide an interface for
dispatching plans to external executors (Cashmore et al.
2015). A number of execution-only systems have been
developed such as PRS (Ingrand et al. 1996) and PLEXIL
(Verma et al. 1995, Verma et al. 1996) which may accept
input plans which are either hand-coded or generated by
external planners.
 This language barrier between planning and execution
models increases complexity due to the need to translate
between the two languages and maintain two different be-
havior models. In such hybrid systems, the planner cannot
help when execution strays outside of the planner's model.
To address this, some systems use the same representation
for planning and execution, but force execution to use the
planner's (declarative) model rather than force the planner
to use the execution system's (procedural) model. Exam-
ples of this include IDEA (Muscettola et al. 2000, Mus-
cettola et al. 2008), and KIRK/RMPL (Kim et al. 2001).
 Two approaches which do use a shared procedural rep-
resentation for planning and execution are Propel (Levin-
son 1995a) and operational models with RAEplan (Patra et
al. 2019). The work presented here follows that direction.

Architecture Overview
Our approach to minimizing the language barrier involves
adding choice points to a general programming language
and using it as the action representation for both planning
and execution. The system is called Propel: The Program
Planning and Execution Language (Levinson 1995a).

Proceedings of ICAPS 2020 workshop on Integrated Planning and Execution
(extended version with expanded experiment results)

Figure 1: Propel's three levels of processes:
 Application, Supervisor, and Chief Executive.

The original version of Propel added choice points to LISP
and laid out the core framework: a general programming
language is augmented to include choice points, defining a
search space of program variations, along with a message-
based interface to supervisory processes including a plan-
ner. It demonstrated our original hypothesis that anytime
planning can increase execution robustness by extending
the execution operating condition range. The second ver-
sion of Propel (Levinson 2005), added choice points to
C++, included a simple temporal network (Dechter et al.
1991), and was targeted at the domain of autonomous
software repair. It addressed another motivation: to in-
crease the scope of the planner's model to include the exe-
cution system software.
 This paper presents Propel 3, dubbed PropelPy, a new
version which adds choice points to Python and which has
been extended to support a simple form of goal reasoning
(Aha 2018). PropelPy is a Python library which enables
integrated planning, execution and goal reasoning to be
added to Python programs. Existing Python code might
even be retrofit by replacing current deterministic choices

with choice points to create a search space for the planner
to explore when the current deterministic choice fails. Pro-
pelPy design objectives include: (a) place a minimal learn-
ing curve on Python Programmers with minimal AI train-
ing, (b) provide a tool for experienced AI practitioners who
seek a minimally restrictive (maximally expressive) action
representation and more flexible and tightly integrated
planning and execution, and (c) provide a tool to explore
how balance variations between planning and execution
compares with human executive dysfunction.
 Figure 1 shows the three process levels within Propel:
The Application, Supervisor, and Chief Executive levels.
The Application level contains all of the domain-specific
code. The Supervisor level contains meta processes which
monitor and manipulate the application processes. The
Execution Supervisor is called the Controller and the Plan-
ning Supervisor is called the Planner. The planner search-
es through choice point space which may involve back-
tracking. The execution system does not search or back-
track. It uses heuristics to make reactive choices and
doesn't strictly require input from the planner. The planner
and controller exchange choice point rules to inform each
other about choices and outcomes. The Chief Executive
monitors and manipulates the supervisors. We use the term
"Controller" to distinguish the Execution Supervisor's mid-
dle-management role from the Chief Executive.
 The Application level processes execute Python code
extended with choice points, heuristics and integration with
supervisory processes. The choice points embedded in ap-
plication code describe nondeterministic assignment state-
ments, defining the planner's search space of program vari-
ations. Choices may be a list of any Python data type in-
cluding class objects and dictionaries.
 Search nodes: Each node in the search tree corresponds
to an application-level process which spawns a child pro-
cess for each choice at a choice point. Each tree branch
corresponds to the parent process/node splitting into chil-
dren for each choice. Each node represents a unique pro-
gram variation based on the sequence of choices (branches)
from the root to the node. Each node has information only
about its own computational context and reports its compu-
tational state, choices and outcomes to its supervisor.
 Each node has its own copy of the agent's state diction-
ary, called the "node state", which corresponds loosely to
the agent's "belief" state. The node state has no pre-
defined structure other than being a Python dictionary. It’s
a black box to the planner which has no domain specific
knowledge. The node state contains any data required by
the app level to detect goal success and failure states, and
to provide inputs to app-level provided heuristic methods.
 Node Mode: Each node has a mode which is execution
or planning. The Planner manages the tree of planning
nodes. It starts/stops the application level code in planning
mode. The Controller runs the same application code in
execution mode to manage the execution nodes.

- Start/Pause/Resume/Stop cmds
- Choice point rules

Chief Executive
- Meta-reasoning
- Coordinates planning and execution
- Global interprocess communication

Planning Supervisor
("Planner")
- Start & Stop App procs
- Mode: Planning (shadow/solve)
- Search space of program choices
- Heuristics w/ backtracking
- Goalstack

- Start/Pause/Resume/Stop cmds
- Choice point rules and goals

Application Processes
- Domain-specific Python code
- Embedded “choice points” with local and global heuristics
- Agent 'state' is modeled with Python dictionary
- Mode: Execution or Planning
- Push/pop goals from goalstack
- Instrumentation for computational state

Execution Supervisor
("Controller")
- Start & Stop App procs
- Mode: Execution
- Monitoring & control
- Heuristics w/o backtracking
- Goalstack

Mode: Execution
Commands &
 observations Mode: Planning

sensors & actuators

simulator

 Simulating Primitive Actions: Application code may
branch based on the node mode so that "primitive" actions
may send out physical actuator commands in execution
mode but simulate those commands in planning mode.
 The Supervisor level includes an Execution Supervisor
and a Planning Supervisor. The supervisors perform
runtime monitoring, verification, and recovery of applica-
tion level processes. The planner manages search through
the space of application level nodes. The planner and con-
troller are supervisor twins, running nearly the same code
to monitor and manipulate the same application-level Py-
thon code. They both send commands to start, pause, re-
sume and stop the application processes. However, there
are differences between them. The planner can backtrack
through the search space, but the controller cannot. Con-
troller decisions are commitments to act which may change
the environment, while planner decisions don't change the
environment. The controller never backtracks and uses a
single process. The planner creates multiple processes.
 Execution and planning processes communicate via
state-action rules which provide choice point advice. The
rule condition is a node's computational state (process con-
trol stack) and node state at the choice point and the rule
action is a choice and an outcome (goal success or failure).
 The Chief Executive level is a single process that man-
ages the Planner and Controller. Its primary role is to man-
age the transitions between execution and planning. It
sends start, pause, resume and stop messages to the Planner
and Controller, and passes rules between them.
 Heuristic functions and reactive competence: The
application level may provide domain-specific local and
global heuristics, sorting functions which are passed to the
Planner for search control. In execution mode, the local
heuristics define the default execution behavior. This pro-
vides a default reactive competence (Drummond et al
1993) which may be augmented by planner advice.

Example: Collecting Rocks
We now introduce the example application which will be
used throughout the paper. This example was specifically
designed to motivate and drive the Goal Reasoning exten-
sions to Propel. Our example is a rover which must find
and pick up rocks and deliver them to one of the designat-
ed delivery points depending on the rock type (either trian-
gle or diamond).
 Figure 2 shows an example initial state. The rover is the
green circle on the right. The orange cells are recharging
stations and the one on the right, where the rover is, is also
"home". The black squares are obstacles, blocked cells
where the rover cannot go. The red cell with a triangle in
the top-right quadrant is the delivery location for triangles.
The red cell with a diamond in the lower-right is the deliv-
ery station for diamonds. The problem may be varied by
changing the density of obstacles and rocks. The red out-

line highlights a cul-de-sac which traps the controller's
default heuristics.

Figure 2: An Initial State

Goal Reasoning: The rover maintains a goalstack for pick-
ing up and delivering each rock. Initially the rover sees
only the single closest rock, and has a single goal to pickup
and deliver that rock. As it moves, it sees any new rocks
within 4 cells of its current location. Whenever the rover
sees a new rock, it adds it to a list of visibleRocks. After it
finishes delivering a rock, it pops the goal for that rock,
chooses a new visible rock and pushes a new goal to
pickup and deliver that rock.

G3: GoToCell (cLoc) Supergoal: None
G2: GoToCell(pLoc), Precond: R2 @(pLoc), Supergoal: G1
G1: PickupAndDeliver R2 from (pLoc) to (dLoc), Subgoal: G2

Figure 3: Example goalstack

Figure 3 shows an example goalstack. The initial goal G1
is to PickupAndDeliver rock R2 from pickup location
pLoc, and deliver it to dLoc. G1's first subgoal is G2, to
GoTo pickup location pLoc. The top goal, G3, is a contin-
gent goal to GoTo the charging station (cLoc) when the
energy dips below a minimum threshold.
 All three of Propel's process levels have been extended
to support goal stack management. Application level code
is responsible for adding and removing goals on the goal
stack. Goals may have preconditions which are domain-
specific Boolean Python methods that take the node state
as input. The application level informs the supervisor level
when goals are added or removed.

 At the Supervisor level, the Planner associates each
search node with a goal and only selects nodes associated
with goals currently on the goal stack.
 The Chief Executive level manages transitions between
planning and execution when goals succeed or fail. For
example, when the Chief Executive is informed of an exe-
cution failure, the planner is called to solve the top goal on
the goal stack, and then return the choice point rules for
achieving that goal back to the controller for execution.
 Contingent actions push new goals onto the stack based
on dynamic state conditions. For example, sometimes the
rover must preempt its current goal and go to the recharg-
ing station. The rover has a limited amount of energy
which is consumed by each step and consumption is in-
creased while it is carrying a rock. The rover is aware of its
energy level and diverts to the closest charger when it gets
below a minimum level by pushing a new goal "GoTo
charger" onto the goalstack. The rover heads to the closest
charger, which depends on its current location. After re-
charging, the "GoTo charger" goal is popped from the
stack, and the rover resumes the prior goal. Figure 3 shows
a contingent goal G3, to go to the charger location, that
was pushed onto the stack.
 Exogenous events: The agent must contend with exog-
enous events due to another agent also picking up and de-
livering rocks. The two agents do not communicate. An
exogenous event occurs when another agent moves a rock
while our agent is going to pick it up. In that case our agent
must discard the goal for delivering the missing rock. In
Fig 3, the goal G2 shows a precondition that rock R2 is at
the pickup location. If R2 is missing when the rover gets to
the pickup location, then the precondition fails, causing G2
and its parent goal G1 to be removed from the stack. An
exogenous event also occurs when the agent arrives at the
delivery depot and finds out that it is full/closed which
causes the agent to find a secondary delivery location on
the far (left) side of the grid. A third event is that a rock
may fall out of cargo while the agent is carrying it, causing
the agent to abandon delivery of that rock.
 Application-level procedures. Figure 4 shows the key
application level procedures for our example, simplified
slightly for presentation. This is our unified action repre-
sentation, used for both planning and execution. The li-
brary calls to Propel's meta-reasoning Supervisor processes
are shown in bold. The top-level procedure is Rover(),
which repeatedly chooses a visible rock (line 5), then calls
PickupAndDeliver() (line 7), which pushes the top-level
goal PickupAndDeliver onto the goalstack (line 9).
PickupAndDeliver() then calls GoToCell() twice, to go to
the pickup location and then to go to the delivery location.
 GoToCell() repeatedly chooses a move direction (line
18) then moves in that direction, until it reaches the target
cell. This is where most of the choices occur, choosing
between North, South, East and West at every step.
 GoToCell() first pushes a goal onto the goalstack to go
to the cell loc (line 16). This is a subgoal for the initial

goal PickupAndDeliver. The local heuristic sortBy-
GoalDistance() is passed to chooseValue() (line 18) to
sort choices in order of increasing plan cost plus goal dis-
tance based on the node state.

1. Rover()
2. visibleRocks = list(closestRock())
3. while not timeExpired:
4. if visibleRocks:
5. rock = chooseValue(visibleRocks,
6. sortByDistance, nodeState())
7. PickupAndDeliver(rock)

8. PickupAndDeliver(rock):
9. goal = pushGoal(pickupAndDeliver(rock,

 precond: isRockAt(rock.pos))
10. GoToCell(rock.pickupLoc)
11. pickup(rock)
12. GoToCell(rock.deliveryLoc)
13. putdown(rock)
14. removeGoal(goal)

15. GoToCell(loc):
16. g = pushGoal(goto(loc), preconds: None)
17. while not at loc and currentGoal == g:
18. dir = chooseValue({N,S,E,W},

 sortByGoalDist, nodeState(), g)
19. Move(dir)
20. updateHeuristicScore()
21. updateVisibleRocks()
22. testPrecondsAndUpdateGoalstack()
23. if subTourDetected():
24. fail(reason: "subtour")
25. elif lowEnergy():
26. GoToCell(chargerLoc) // recursive call

 // end while
27. removeGoal(g, "success")

28. Move(dir):
29. if isPlanningMode():
30. simMove(dir) // update node state
31. else:
32. doMove(dir) // send cmd & update node state

Figure 4: Application-level source code for the Rover process

with embedded library calls to search engine and goalstack.

 After choosing a direction, the move is executed at line
19, which updates the node state with the new agent posi-
tion. The node state's set of visible rocks is updated on line
21, and preconditions are tested against the updated node
state on line 22. The precondition is specified as part of
the goal statement on line 9. It’s a Boolean Python method
called isRockAt() which takes as input the expected loca-
tion of the rock the agent is going to pick up. If updat-
eVisibleRocks() removes that rock from the node state
(because the other agent moved it), then isRockAt() returns
False and testPrecondsAndUpdateGoalstack()
will remove the related goal(s) from the goalstack. This
removes the top goal on the stack, causing GoToCell() to
exit the while loop (line 17).
 If a subtour is detected on line 23 (the rover revisits the
same cell location twice while achieving the same goal)

then fail is called on line 24, which informs the Supervi-
sor level. This is the trigger for calling the reactive planner.
GoToCell() is recursive and calls itself on line 26 to go to
the charger location in the contingent case when energy is
low. After the agent arrives at the goal location, the associ-
ated goal is removed from the goalstack (line 27).
 Line 29 shows where the primitive action Move()
branches to either execute or simulate the physical move
depending on if the node is in planning or execution mode.
In either case, the nodeState is updated to reflect the out-
come of the move by simMove() or doMove().
 The primary interface between the Application level
and the Supervisor level is the statement:
chooseValue(choices,choiceSorter,
nodeState, goal) (lines 5 and 18). This is a nonde-
terministic assignment statement because it may produce
different results in different contexts. The choices are sort-
ed by the domain-specific heuristic function choiceSorter,
which is defined at the application level. This choiceSorter
takes the nodeState as input. The goal parameter identifies
which goal is associated with this choice. Application level
code may contain success and fail statements to inform
the Supervisor level when a domain-specific success or fail
state has been detected. The Supervisor may suspend a
failed application process and inform the Chief Executive.
In execution mode, a call to fail triggers a transition to
planning. In planning mode, the node is pruned from the
open node list so will not be selected for expansion.
 Strategies for integrated planning and execution.
PropelPy enables development of a wide range of different
strategies for integrating planning and execution. We pre-
sent two methods below which are used in our experi-
ments. Reactive planning where the planner is called to
solve the current goal when the controller gets stuck in a
loop trying to move to a location. Proactive planning
where the planner is called before execution starts.
 Reactive Planning: Shadow/Solve planner modes.
The reactive planner needs to stay in sync with execution
choices, computational state, and external state. If execu-
tion moves several rocks before planning starts, then when
app-level procs start in planning mode, they will see differ-
ent rock positions compared to when those same app-level
procs ran in execution mode. This motivated a new plan-
ning/execution transition strategy: shadow/solve planning
modes. The agent starts by executing the application code,
using default heuristics at each choice point. The planner
starts off in "shadow" mode which means it will track and
mimic the execution choices so the planner stays in sync
with the controller. When the controller fails, the planner
switches to "solve" mode. The planner is called to "solve"
the top goal on the stack, starting from the same current
state as execution. While the planner is in solve mode, the
controller pauses the app-level processes which are in exe-
cution mode. When the planner achieves the goal, it
switches back to shadow, and sends choice point rules back
to the controller which resumes execution using the plan-

ner's advice. At this point, the planner is ahead of the con-
troller, so the planner pauses while the controller executes
the plan and catches up to the planner. After the controller
follows all of the planner's advice it continues execution
without planner advice. The planner switches back to
shadow mode, mimicking execution choices until it is
called again.
 Proactive Planning: This is "anytime-ish", in that you
may specify a planner time limit or a number of goals for
the planner to solve before handing off the "best" plan to
the controller. If a time limit is specified, the planner will
return when the next goal is achieved (popped from the
goalstack) after the time limit expires. Since the planner in
our example uses A*, the most recently expanded node
may not be on a solution path, so we defer the handoff un-
til the next goal is solved.
 Reactive execution: We are fundamentally interested
exploring the division of labor between a controller with
default reactive competence and a planner which can rea-
son about all of the controller's behavior. Therefore, we
created a "Controller only" mode which is pure execution
and serves as a baseline for experiments to assess the value
added by planning. Spending time to improve the control-
ler's robustness often reduces the cases when the planner
helps, but that is the trade off we are interested in studying.
When is it worth spending time (and how much time
should be invested) to improve the controller's reactive
heuristics vs. tossing the problem the planner?

 Search Space
Propel searches a space of program variations defined by
choice points embedded in the code. When a choice point
is executed that process calls Python's fork() to create a
child process that continues with the selected choice. The
parent process remains suspended until backtracking oc-
curs, in which case the supervisor may wake up the node's
parent process to generate a new choice (fork a new child).

 [Chief Executive]
 | |
[Execution Supervisor] [Planning Supervisor]
 [x1 root] [p1 root]
 [x2, N, open] [p2/x2, N, open]
 [x3 N, failed] [p3/x3, N, failed]
 [x4/p4, E, open] [p4, E, success]
 [x5, W, open] [p5/x5, W, success]

Figure 5: Search trees showing shadow/solve planning modes

Figure 5 illustrates the execution and planning process
(node) trees and how they keep in sync. It shows an exam-
ple of what we mean by "flexible transitions". There are
several transitions (handoffs) between the Controller and
the Planner here. They are taking turns following the leader
(the one making choice point decisions). The leader sends
its choices to the follower. The follower's node name is
shown in bold and has the name of the leader's choice node

appended. For example, "p2/x2"means that planner node
p2 followed the choice from execution node x2.
 Execution starts as the leader and the planner starts
in shadow mode mimicking the execution choices. Execu-
tion starts by calling the top level Rover() method at the
root node x1. When x1 reaches a choice point, it spawns x2
and informs the planner so it can follow along. Execution
makes default heuristic choices for nodes x2 and x3, and
the planner follows. When execution node x3's choice N
fails, there is a handoff (transition) to the planner. The
Chief Executive is notified of x3's execution failure then
pauses the controller and tells the planner to solve the top
goal (planner switches from shadow to solve mode). The
planner takes the lead for p4. It backtracks and chooses
direction E instead of N which solves the top goal on the
stack. The planner informs the Chief Executive about the
solved the goal, switches back to shadow mode, and be-
comes the follower. The Chief Executive restarts the con-
troller which resumes execution using the planner’s advice
(x4/p4). Execution is now the leader and chooses W at x5,
while the planner follows along.

Search Control

Propel includes several methods to control search. The first
and most important is the sparse search space. The search
space is sparse because it only has branches at choice point
locations. Deterministic subroutine calls, iterations and
conditionals are not represented in the search space. Most
of the application-level code can be deterministic with
search triggered only at explicit choice point locations.
 Heuristics are the second most important search control
method. The app-level may provide local and global heu-
ristics which are called by the Planner to control search.
The local heuristics control the order of search node crea-
tion by sorting the choices at a choice point, while global
heuristics control the order of node selection/expansion.
First a node is selected for expansion by the global heuris-
tic, and then the local heuristic is used to sort the order in
which that node's children are created. The local heuristic
sortByGoalDistance() sorts the choices in order of increas-
ing plan cost plus distance to goal (based on the node
State). Cost is the # of moves in the plan up to that point,
and distance is the remaining Manhattan distance to the
goal location. This is similar to A* but used only at the
local level to sort the choices at a single choice point.
 An actual A* search is implemented at the global heuris-
tic level for node selection and pruning of nodes which
reach the same state with worse A* score. To implement
A* while maintaining our constraint that all domain
knowledge is in the app-level, the app level must provide
two methods: nodeEqual() and nodeScore(), which each
take the nodeState dictionary as inputs. The estimated goal
distance is tied to the destination cell for the current goal.
When the rover changes destinations, say from a pickup

location to a delivery location, then the goal distance calcu-
lation also changes. This also works when the contingent
recharge action pushes a new goal to go to the charger lo-
cation and then resumes heading to the prior location.
 The Controller is locked into depth-first node selection
and cannot backtrack so does not use the global heuristic.
 Situated Control Rules (Drummond 1989; Drummond
et. al, 1993; Levinson 1995) are the third most important
search control method. Planning and execution nodes
communicate by exchanging condition-action rules called
Situated Control Rules (SCRs) which describe context and
outcome for choices made during planning and execution.
One SCR is defined for each branch in the search tree. The
rule's condition is the computational state (control stack)
and the nodeState for the parent process at the choice
point. The rule's action is the choice which spawned the
branch and the outcome. Computational state is captured
using Python's introspection method inspect.stack().

Situated Control Rule:
IF <condition> THEN <choice> <outcome>
<condition> = (<StackFrame>+)
<StackFrame> = (method:file:lineNumber, nodeState>)

Rule P46
IF ((gotoCell:rover.py:176,
 {currentPos: (16, 5), goalPos: (13, 5),
 t: 40, dist: 3, cost: 4, energy: 87}),
 (pickupRock:rover.py:113, {}),
 (pickupAndDeliverRock:rover.py:95, {t: 38}),
 (rover:rover.py:72, {t: 38}))
THEN (choice: 'W', Status: Success)

Figure 6: Situated Control Rule (SCR).
There is an SCR for each node in the search space.

 Figure 6 shows the grammar and an example SCR. Rule
P46 is the rule for planning node p46 in the search tree.
Rule P46's condition says (starting from the bottom of the
control stack/last stackframe): The top-level method rov-
er() called subroutine pickupAndDeliverRock at line 72 of
file rover.py, with local variable t (time) = 38. Then
pickupAndDeliverRock called pickupRock at line 95 of
rover.py, with t = 38. Then pickupRock called gotoCell at
line 113 of rover.py. The top stack frame shows gotoCell
executed the choice point leading to this rule at line 176 of
rover.py, with node state (local variables) showing the
agent's current position (16,5), goal position (13,5), t = 40,
with distance to goal = 3, cost (# of prior steps) = 4, and
energy level 87. This rule, created by the planner, will be
applied by the controller for execution nodes with a match-
ing state. The distance and cost values shown in the top
stack frame are passed to the local and global heuristics.
 SCRs are collected when transitioning between planning
and execution and vice versa. Collecting SCRs is similar to
classical goal regression. When the planner solves a goal,
then SCRs are collected for the path from the given leaf

node to the root node and passed to the controller so it
knows the planner's choices. When an application level
process executes a choice point, SCRs are combined with
the local heuristics to sort the choices. Success choices
are chosen first and failed choices are chosen last.
 Managing process combinatorics: chooseValue()
uses Python's fork() method to split a single computa-
tional process into multiple processes, each representing a
continuation with a different choice. We use several meth-
ods to minimize the number of computational processes
created and running at any given time. Most importantly,
processes are aggressively killed as soon as possible. Since
there is no backtracking during execution, only one process
is maintained for application level code running in execu-
tion. After a choice is made in execution mode, the parent
process is killed and only the child continues on. When the
planner is in shadow mode, it does the same thing because
it also will not backtrack over execution commitments.

Experiment
Our first hypothesis is: Planning can increase the range
of execution operating conditions (beyond situations cov-
ered by default reactions). In other words, the planner can
solve problems which default reactions cannot. This is
measured by the number of problems which can be solved
only by the planner.
 Our second hypothesis is: Planning can improve execu-
tion performance vs. execution with default reaction only.
In cases when default reactions can solve the problem,
planning can improve performance. We measure perfor-
mance with the following equations:
• total time = planning time + execution time
• execution time = moveDuration * # of executed moves
TODO: execution time in code is:
executionStart = if anytime then anytime.end else supervi-
sorStart time (bug? should only be controller?). In S case,
planning time is included in execution time.
 We are particularly interested in the effect of planning
time on execution time and on total time. In our experi-
ments, the moveDuration = 1 second, meaning the simula-
tor takes 1 second for each physical move which is "exe-
cuted". Our expectation is that with the help of the planner,
execution gets more done with fewer steps as problem dif-
ficulty increases. Those results were demonstrated with the
original version of Propel (Levinson 1995a). We aim to
reproduce similar results with PropelPy.
 This preliminary evaluation involved running three
agent variants. One variant, C, uses only the Controller
without the Planner. This means the agent relies solely on
the controller's heuristic reactions. The variant S (shadow
planner) uses the reactive planner with the shadow/solve
strategy. Variant A is our proactive, anytime-ish planner.
 Table 1 summarizes our results. Each problem is defined
by its o% (obstacle density) and r% (rock density).

The obstacle density is the chance that an obstacle is in any
given cell (10% chance for first problem), and the rock
density is the chance that a rock is in any given cell.
Column 1 is the agent type, denoted as:

C = Controller Only (no planning),
S = Shadow Planner (reactive)
An = Anytime-ish Planner (proactive)
 = Plan for n goals before execution
* = failed to solve problem
 = rover moved in circles until energy ran out

Column 2, exec nodes, shows the number of execution
nodes created, which corresponds to the # of executed
moves (makespan). Column plan nodes shows the # of
planning nodes created, column rocks shows the # of rocks
delivered, column goals is the number of planner goals
created. Total time is the total time (seconds) for the run,
which is the sum of plan time and execution time.
 We built three versions of C, called C1, C2 and C3. C1

Agent
type

exec
nodes

plan
nodes

rocks plan
goals

total
time

plan
time

exec
time

Problem 1: o% =10, r% = 5
C 181 - 5 25 211 0 211
S 177 198 5 25 215 0 215

Problem 2: o% = 15, r% = 5
C 181 - 7 37 214 0 214
S 181 201 7 37 222 0 222

Problem 3: o% = 18, r% = 10
C 177 - 7 34 210 0 210
S 179 182 7 34 222 0 222

Problem 4: o% = 20, r% = 10
C 186 - 7 33 220 0 220
S 174 183 6 29 212 0 212

Problem 5: o% = 20, r% = 25
C* - - - - - - -
S 189 243 7 21 250 1 249

A5* - - - - - - -
A10* - - - - - - -
A11 187 164 7 12 255 27 227
A15 187 231 7 15 267 38 228
A20 187 251 7 35 271 42 229

Problem 6: o% = 22, r% = 25
C 170 - 7 35 205 0 205
S 192 197 8 40 237 0 237

A5 170 16 7 5 207 2 205
A10 170 93 7 10 222 15 207
A11 192 106 8 12 251 17 234
A12 192 185 8 14 266 31 235
A15 192 245 8 40 278 42 236
A30 192 419 8 40 313 73 240
A35 192 490 8 36 327 87 240

Problem 7: o% = 27, r% = 10
C* - - - - - - -
S 182 458 6 30 290 0 290

A5* - - - - - - -
A10* - - - - - - -
A11 172 180 6 13 235 29 206
A15 172 215 6 30 243 35 208
A20 172 296 6 30 259 50 209
A25 172 1105 6 25 552 340 211

Table 1: Preliminary Experiment Results

is the simplest. It just turns another direction when it runs
into an obstacle, but easily gets caught moving in circles in
small cul-de-sacs. C2 is a bit smarter, but still gets caught
looping in (larger) cul-de-sacs. C3 is the most advanced
and gives the planner a good challenge.C1 and C2 both get
stuck in many cases and are easily beat by S and A. There-
fore, our experiments all use C3, which is a challenge to
the planner. Sometimes the planner improves on C3, and
sometimes C3 fails, but also sometimes the planner only
degrades performance. These different controller behaviors
are implemented as variations of the local heuristic which
sorts the move direction choices.We ran C, S and A on
several different problem instances with different combina-
tions of obstacle and rock densities. Each experiment ran
for 150 execution steps before heading back to home base.
 We are primarily interested in how exec time and total
time vary as a function of plan time. Another key metric is
comparing the # of execution nodes created (column x) for
C vs S and A. We expect to trade plan nodes for execution
nodes as the problem gets more difficult. This means the
planner explores more choice points (creates more nodes)
than the controller, so that the controller executes fewer
steps (creates fewer nodes) when advised by the planner.
 For a given problem, we expect fewer exec nodes in the
S and A cases compared to C, and would like to see more
rocks delivered with planning than with C. We also expect
those differences to increase with problem difficulty.
 The first 3 problems are so simple (unconstrained) that
there is marginal benefit from planning while increasing
total time and (surprisingly) also exec time. Problem 4 is
the first case where the planner shows some benefit by
reducing the number of execution steps and the total time,
but surprisingly also delivers one less rock and solves few-
er goals. The most interesting cases are Problems 5, 6 and
7 which are described below.

Problem 5:

Figure 7: Grid layout for problem 5

Figure 7 shows the grid layout for Problem 5. The red
region shows a cul-de-sac which traps some agent types.

Figure 8: Results for problem 5

Figure 8 shows the relation between total, execution, and
planning time for each of our agent types. The times are
plotted on the left axis. The x-axis shows the agent types.
A5 means plan for 5 goals before execution, A10 means
plan for 10 goals, etc. Asterisks in the C, A5 and A10 cas-
es mean those agents failed to solve the problem because
they moved in circles until energy ran out.
 The shadow planner was able to solve the problem, and
A11, A15, and A20 also did enough planning to escape the
trap. This supports our hypothesis that planning can in-
crease the controller's operating range. Note that S has the
minimum total time but A11 has the minimum execution
time. Figure 8 shows evidence for our first hypothesis:
S and A11+ extend controller’s operating range. S = min
total time but more steps vs. A11 with min steps and exe-
cution time.

Problem 6:

Figure 9: Grid layout for problem 6

Figure 9 shows the grid layout for problem 6. There are
more obstacles than problem 5, but all agent types can
solve it.

Figure 10: Results for problem 6

Figure 10 shows the results for Problem 6. Some agent
types deliver 8 rocks while others deliver only 7, so the #
of rocks delivered is plotted on the right and shown by the
dashed purple line. Agents C, A5, and A10 delivered 7
rocks, while all others delivered 8, but also took more time.
Agent C is best for 7 rocks, but S is best for 8 rocks. Note
that C and A10 both deliver 7 rocks, but A10 takes more
time. Additional planning beyond A11 only increases the
time with no benefit. Both A15 and A30 delivered one
more rock than C, while increasing the number of execu-
tion steps x and the taking more time t.
• 8 rocks delivered for S and A11+ (and more steps) vs.

7 rocks for C, A5 and A10.
• A5 has min steps, total time and execution time, but

only delivered 7 rocks

Problem 7:
 The grid layout for Problem 7 was shown previously in
Figure 2. This problem has the most obstacles and fewest
rocks. The red region shows another cul-de-sac which
traps C, A5 and A10 variants.
 Figure 11 shows the results for Problem 7. C gets stuck
in the large jagged cul-de-sac in the center top of the grid.
S is reactively called and successfully plans an escape from
that trap. A5 and A10 also get stuck, indicating that pre-
planning 5 goals (A5) or 10 goals (A10) is not enough
planning to avoid the trap. A15 shows the most benefit for
the least cost, where pre-planning 15 goals solves the prob-
lem while reducing the # of execution steps, total time and
execution time (compared to S). A20 shows that pre-
planning an additional 5 goals provides no benefit while
taking slightly more time than A15. Agents S and A11 or
higher provide enough planning to escape the trap. A11 is
the clear winner here with minimum total time and execu-

tion time. Planning more than 11 goals only degrades per-
formance.

Figure 11: Results for problem 7

• Hypothesis Evidence: Shadow planner & A11+ ex-
tended controller’s operating range

• A11 is best planning cost/benefit
• Diminishing returns for planning time > A11

Experiment Conclusions:

These preliminary results show evidence to support our
two hypotheses:
1. Planning sometime extends the controller's operating

range vs. default reactions, by solving problems out-
side the controller's default reactions

2. Planning sometimes improves performance vs. de-
fault reactions. For example requiring less time or de-
livering more rocks.

Other observations include:
1. There is often a "sweet spot" where planning helps,

but any more or less only hurts
2. We see domain specific tradeoffs such as total time

vs. execution time, and time vs. delivering more rocks.
For example, problem 5 shows a trade between S =
minimum total time vs. A11 = minimum execution
time, and problem 6 shows a trade between taking less
time vs delivering more rocks.

3. We see a lot of problem variance, where the best
agent type for the problem varies widely with small
problem changes.

This experiment was designed to illustrate our hypothesis
and how we might evaluate the system. The results are
very preliminary and specific numbers depend on the
quality of the application-level heuristics and how much
complexity is built into C. The general result patterns do
appear to support our hypothesis that planning can increase
the range of operating conditions for execution.

Related Work
Unified planning and execution models

Figure 12: Spectrum of unified planning and execution models

Figure 12 shows roughly how this work relates to other
integrated planning and execution systems with unified
planning and execution models.

ERE (Drummond, et. al, 1993). Propel is a direct exten-
sion of the Entropy Reduction Engine (ERE) and incorpo-
rates several ERE features for integrated planning and exe-
cution including SCRs and Reaction-First Search (RFS),
where the planner first explores the controller's heuristic
choices. Execution could make reactive choices without
planning, but the planner could augment or "robustify" the
reactive system's policy. A key difference is that Propel
uses a procedural action representation compared to ERE's
STRIPS-like action representation.
 Propel 1 (Levinson, 1995) laid the foundation for this
work and Propel 2 (Levinson 2005) built on that using
C++ as the action representation. It supported concurrent
application-level procedures (e.g., wheels and camera) and
used a Simple Temporal Network (STN) (Dechter et al.,
1991) to coordinate the concurrent wheels and camera pro-
cesses through a shared database. Propel 3 was initially
presented in the original version of this paper (Levinson
2020).
 IDEA (Muscettola et. al, 2000; 2002) is a unified plan-
ning and execution system like Propel. However, IDEA
executes the planner’s language while Propel plans with
the controller's language. IDEA’s controller executes plans
by interpreting the planner’s declarative language. IDEA
has no default reactive competence and calls the planner to
refine the plan before each execution step.
 KIRK/RMPL – [Kim, et. Al, 2001] William’s
KIRK/RMPL system also provides a unified approach to
planning and execution. It differs from Propel because it
compiles procedural constructs into a declarative model
which is then interpreted by during execution. KIRK is
similar to IDEA this way, but differs from IDEA by using
an explicit (declarative/graphical) model of control behav-

ior. RMPL can represent control flow constructs such as
loops and conditionals, which are compiled into a declara-
tive model used for planning and then interpreted during
execution.
 Operational Models and RAEplan (Patra et al. 2019)
has similar motivations to unify the planning and execution
with a shared procedural action representation, and to ex-
plore how planning effort affects execution performance.
RAEplan's action representation is that of RAE (Ghallab et
al., 2016), which is similar to PRS (Ingrand et al., 1996).
That model, although procedural, is still highly structured
and specialized language which less expressive than Py-
thon. Choices in RAEplan are restricted to choosing tasks,
while choices in PropelPy may be any Python data type or
class object.

Hybrid planning and execution models
A few of the many systems which integrate different plan-
ning and execution models include:
• MILP + PLEXIL (Levinson 2019)
• Golog + PDDL (Hofmann et al., 2016)
• CLIPS (CX) + PDDL (Neimuller et al., 2019)
• ROSPlan + PDDL + Esterel (Berry & Gonthier 1992)

Semi-Black Box (SBB) methods (Katz et al. 2018) de-
scribe methods for integrating planning into Java and is
motivated by similar concerns about planning methods
being inaccessible to non-AI experts. A key difference is
that SBB is planning only, while our approach is designed
for integrated planning and execution.

Future Work
We've only scratched the surface for integrating Goal Rea-
soning with Propel. Future extensions may include:
 Integration/transition Strategies. A primary motiva-
tion of this work is to explore different transition/handoff
strategies between planning and execution. This involves
defining the transition triggering events and planner termi-
nation criteria. We are continuing development of the
strategies presented above, as well as exploring others. For
example, we could combine reactive and proactive, so that
the planner is called after execution failure, but plans for
some time or some # of goals beyond the top goal which
failed.
 Intra-modal rules: Currently, SCRs generated by the
planner are only used by the controller and vice versa (in-
ter-modal). We may explore reusing planner rules within
planning, for example transferring rules learned about suc-
cessful or failed choices from one part of the planning tree
to another.
 Goal Reasoning integration. This paper presents only
an initial effort for integrating goal reasoning into Propel.
We plan to explore many issues not yet addressed, such as
goal reformulation, opportunistic goals, nondeterministic

Declarative model Procedural model

• Reaction-First Search/ERE

(Drummond et al., 1993)

• IDEA
(Muscettola et al, 2000)

• Propel 1 (LISP)
(Levinson 1995)

• Propel 2 (C++)
(Levinson 2005)

• Propel 3 (Python)
(Levinson 2020)

• KIRK/RMPL
(Kim, Williams et al., 2001)

• Operational Models
(Patra et al., 2019)

subroutine calls and goal patterns. We also plan to tighten
the connections between goals, procedures and choice
points.

Conclusion
This paper addresses motivations and challenges for tightly
integrated planning and execution in autonomous systems.
Two key challenges addressed are unifying the action rep-
resentations used by the planning and execution systems,
and using a general programming language for that action
representation. We aim to expand the scope of the planner's
model to cover the complex behavior of fully-expressive
general programming languages. We'd like to do this with-
out sacrificing the benefits of unified planning and execu-
tion models to minimize the need to develop and maintain
different models, and minimize the risk of information lost
in translation between different models.
 Contributions of this work include: (1) A library for in-
tegrating planning, execution and goal reasoning into Py-
thon, accessible for programmers with minimal AI train-
ing, (2) a procedural action representation for unified plan-
ning and execution to minimize the language barrier and
facilitate flexible transitions, (3) a tool to study autonomy
as a dynamic balance between planning and execution, and
for cost/benefit analysis of planning vs. reaction only.

References
Aaseng, G.; Frank, J.; Iatauro, M.; Knight, C.; Levinson, R.; Os-
senfort, J.; Scott, M.; Sweet, A.; Csank, J.; Soeder, J.; Carrejo, D.;
Loveless, A.; Ngo, T.; and Greenwood, Z. 2018. Development
and Testing of a Vehicle Management System for Autonomous
Spacecraft Habitat Operations, Proc. of AIAA 2018, Orlando FL.
Aha, D. W. 2018. Goal Reasoning: Foundations, Emerging Ap-
plications, and Prospects. AI Magazine 39 (2).

Barkley, R. 2012. Executive Functions: What they are, How they
work and whey they evolved. Guilford Press. London.

Berry, G., Gonthier, G. 1992. The ESTEREL synchronous pro-
gramming language: design, semantics, implementation. Science
of Computer Programming.

Cashmore, Michael & Fox, Maria & Long, Derek & Magazzeni,
Daniele & Ridder, Bram & Carrera, Arnau & Palomeras, N. &
Hurtós, N. & Carreras, Marc. 2015. Rosplan: Planning in the
robot operating system. Proceedings International Conference on
Automated Planning and Scheduling, ICAPS. 2015.

Chu,Y., Song, YC., Levinson, R., Kautz, H. 2012. “Interactive
Activity Recognition and Prompting to Assist People with Cogni-
tive Disabilities”. Journal of Ambient Intelligence and Smart
Environments. 2012.

Dechter, R, Meiri, I. and Pearl, J. 1991. Temporal Constraint
Networks. Artificial Intelligence, 49:61-95.
Drummond. M. Situated Control Rules. 1989. Proceedings of
Knowledge Representation 1999 (KR’89).

Drummond, M., Bresina, J., Swanson, K., Levinson, R. 1993.
Reaction-First Search: Incremental Planning with Guaranteed
Performance Improvement. Proc. of IJCAI-93. Chambrey,
France.
Ghallab, M., Nau, D., Traverso, P. 2016. Automated Planning
and Acting. Cambridge University Press.

Hofmann, T., Niemueller, T., Claßen, J., & Lakemeyer, G. 2016.
Continual Planning in Golog. Procedings of AAAI 2016.

Ingrand, F, Chatilla, R. Alami, R, Rober, F. 1996. PRS: a high
level supervision and control language for autonomous mobile
robots. In IEEE Int'l Conf. on Robotics and Autonomation.

Katz M., Moshkovich D., Karpas E., 2018. Semi-Black Box:
Rapid Development of Planning Based Solutions. AAAI 2018.,
AAAI Press, Menlo Park, CA.
Kim P., Williams B., Abramson M., 2001. Executing Reactive,
Model-based Programs through Graph-based Temporal Planning.
IJCAI '01. AAAI Press, Menlo Park, CA.
Levinson, R. 1994. Human Frontal Lobes and AI Planning Sys-
tems. Proc. of AI Planning Systems (AIPS-94). AAAI Press.

Levinson, R. 1995a. A General Programming Language for Uni-
fied Planning and Control. Artificial Intelligence, Vol. 76. Issue
on Planning and Scheduling. https://brainaid.com/pubs/aij.pdf

Levinson, R. 1995b. A Computer Model of Prefrontal Cortex
Function. Annals of the New York Academy of Sciences: The
Structure and Function of Prefrontal Cortex. Vol. 769.
https://brainaid.com/pubs/nyas.pdf

Levinson, R. 1995c. An interdisciplinary theory of autonomous
action. AAAI Stanford Spring Symposium. Stanford, CA.

Levinson, R., 1997. The Planning and Execution Assistant and
Trainer. Journal of Head Trauma Rehabilitation, April 1997, As-
pen Press. https://brainaid.com/pubs/jhtr.pdf
Levinson R. 2005. Unified Planning and Execution for Autono-
mous Software Repair (unpublished manuscript originally sub-
mitted to ICAPS 2005) http://brainaid.com/pubs/ICAPS_05.pdf

Levinson, R. 2007. An autonomous cognitive aid with integrated
Sensing, Planning and Execution. Workshop on Intelligent Sys-
tems for Assisted Cognition, University of Rochester, NY.

Levinson, R., Halper, D., Harman, C., Kautz, H. 2009. “A Con-
versational Cognitive Aid with Activity Monitoring, Planning,
and Execution.” (Best Paper Award). IJCAI Workshop on Intelli-
gent Systems for Assisted Cognition, Pasadena, CA. June 2009.

Levinson, R., 2019. Constraint Integer Program Formulations for
NASA Planning, Scheduling and Autonomy Problems. Proc. of
ICAPS 12th International Scheduling and Planning Applications
Workshop. Berkeley, CA.

Levinson R. 2020. Integrated Planning, Execution and Goal Rea-
soning for Python (original version of this paper). Proceedings of
ICAPS 2020, workshop on Integrated Planning and Execution.

Lezak, M. Howelson, D., Bigler, E., Tranel, D. 2012. Neuropsy-
chological Assessment. Fith Edition. Oxford University Press.

Modayil, J., Levinson, R., Harman, C., Halper, D., Kautz, H.
“Integrating Sensing, Planning and Cueing for More Effective
Activity Reminders”. Proceedings of the American Assoc. for

Artificial Intelligence (AAAI) Fall Symposium on AI in Eldercare:
New Solutions to Old Problems. Washington DC. 2008.

Muscettola, N., Dorais G.., Fry,C., Levinson, R., Plaunt, C. 2000.
A Unified Approach to Model-Based Planning and Execution.
The 6th Int’l Conf. on Intelligent Autonomous Systems. Venice.

Muscettola, N., G. A. Dorais, C. Fry, R. Levinson, and C. Plaunt,
2002. "IDEA: Planning at the core of autonomous reactive
agents," in Proc. of the 3rd International NASA Workshop on
Planning and Scheduling for Space, 2002

Niemueller, T., Hofmann, T., Lakemeyer, G. (2019). Goal Rea-
soning in the CLIPS Executive for Integrated Planning and Exe-
cution. Proceedings of ICAPS 2019.

Patra, S., Gallab, M., Nau, D., Traverso, P. 2019. Acting and
planning using operational models. In AAAI. AAAI Press.

Verma, V., Jonsson, A., Simmons, R., Estlin, T., Levinson, R.
2005. Survey of Command Execution Systems for NASA Space-
craft and Robots. ICAPS-05 Workshop on Plan Execution, Mon-
terey, CA.

Verma, V, Jonsson, A, Pasareanu, C, Iatauro, M. 2006. Universal
Executive and PLEXIL: Engine and Language for Robust Space-
craft Control and Operations. In AIAA Space.

