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Abstract 
This paper addresses the need for more flexible 
autonomous systems that detect and correct software 
failures at runtime. We present new methods for integrated 
planning and execution that enable runtime verification 
and repair for software failures, and explore the related 
issue of integrated procedural and declarative action 
representations.   
 We present a library for embedding declarative planning 
methods within procedural C++ code.  The library provides 
an interface to supervisory processes, which monitor 
software execution and provide last-resort error recovery 
after pre-programmed error handlers fail. The library 
provides an interface to search and temporal constraint 
engines maintained by the meta-processes.   The planner 
and controller use the same procedural representation in 
order to share context (computational state) between 
planning and execution. 

 
Motivation 

 
 Limited Autonomy. Today’s autonomous systems 
provide more coverage for hardware failures than software 
failures.  If they cannot represent and reason about 
software failures, they are doomed to blind spots and will 
have limited autonomy.   There are several reasons why 
software failure cannot be avoided including: limited time 
and information at design time, limited time and resources 
for running test cases, changing operating conditions and 
changing mission requirements. Our goal is to include 
more software within the scope of recovery and develop 
autonomous systems that repair their own software. 
 Limited Architectures. Currently, most system 
software is outside the scope of plan-based recovery 
because it is not written in the planner’s modeling 
language. To increase model scope, the planner and 
controller must share computational state information 
about failure and repair contexts.  This is challenging 
because integrated planning and execution traditionally 
involves translating between planners that use declarative 
languages and controllers that use procedural languages. 
Major problems caused by this language barrier include: 

 Redundant & Low Fidelity Models. There is a need to 
develop and maintain a declarative model of the execution 
system using a planner’s modeling language.  The 
planner’s model is redundant with the execution “model” 
(i.e. the software). The planner’s model of software is low 

fidelity since much of the computational state is hidden in 
a black box model of software.  The redundant planning 
model may not match the actual execution software, and it 
is difficult to maintain the model and the code in parallel.   
 Information loss is nearly guaranteed when translating 
between the controller’s procedural language and 
planner’s declarative language, which are typically 
developed independently and optimized for different 
purposes. This information loss reduces the planner’s 
understanding about execution context, and vice versa. 
 System complexity is increased because of the need to 
translate between the two languages.  There is an 
increased need to develop ad hoc translators between the 
two languages, and a lot of the integration effort is 
devoted towards accommodating specific language 
differences. 

Architecture Overview 
Our approach to increasing the scope of failure recovery 
and removing the language barrier is called the Program 
Planning and Execution Language (Propel). Propel 
provides a library for integration between C++ and 
supervisory processes that detect and correct software 
failures.  The library includes new methods for integrating 
search and temporal constraints within C++ applications.  
 We also present new methods for integrated planning 
and execution with improved computational context 
switching and sharing capabilities compared with existing 
methods. These new methods allow us to increase the 
scope of error handling to include the system’s software 
infrastructure. Additionally, the planner and controller’s 
action representations are unified so more context 
information can be preserved during transitions between 
execution and planning.     
 Figure 1 shows the three different process levels within 
Propel: The Application, Supervisor, and Executive levels.  
The Application level contains all of the domain-specific 
processes.  The Executive and Supervisor levels are meta- 
processes (they monitor and manipulate the application 
processes) in order to detect and correct software failures. 
   
 The Application level executes C++ code extended 
with the Propel Library Interface to meta-level supervisory 
processes. The code contains declarative statements that 
interface to search and temporal constraint engines. 



 

Choice points embedded in the code describe alternative 
operations and resources, and define a space of program 
variations. The Application level has information only 
about its own execution environment, like any other C++ 
process.   The application level sends status messages, 
computational state information, and queries to the meta-
level supervisors, and are started and stopped by the 
supervisors. 
 
 The Supervisor level processes perform runtime 
monitoring,, verification, and recovery of application level 
processes. They manage search spaces of application level 
processes. One planning supervisor and one execution         
supervisor is created for each parallel process in the 
application.   The planner provides a last-resort failure 
handler after all application-level fault protection has 
failed. The term "planner" refers to a Planning Supervisor 
and the term "controller" to refer to an  Execution 
Supervisor.  
 The Planners and controllers start, monitor, and stop 
the same compiled application-level code in the same 
environment. The difference is that the planners run the 
application level code with a _PLANNING_ flag true but 
the controllers run the code with that flag false.  
Application code accesses that flag to determine if it is 
running in planning (simulation) or execution mode.  
 Application code may execute different branches 
depending on the status of this flag. Subroutines which 
send out physical actuator commands may simulate the 
commands when the planning flag is true instead of 
sending out actual actuator commands.  The only 
procedures that require simulation are those that interact 

directly with hardware actuators because we want to block 
the actuator commands during simulation, however, any 
procedure can be simulated in order to skip details. All of 
this requires runtime simulation, which may involve 
models of various levels of fidelity. The simulation 
branches may also include choice points and probabilities 
so that high probability variant outcomes may be 
simulated.  Application processes in planning and 
execution mode communicate via rules, called Situated 
Control Rules (SCRs) [Drummond 1989], that provide 
choice point advice about what to do at the choice points 
embedded in the code. 
 
 The Executive level is a single process that manages 
transitions between planning and execution and manages 
databases that enable inter-process communication and 
synchronization.  This involves sending messages to the 
supervisor processes. The executive also handles requests 
for information from the application level. 
 
 Three levels but not 3T: Although Propel has three 
levels, it is significantly different than the 3T system 
[Bonasso, et., al., 1997].  In 3T, each level encodes 
domain-specific activities, but in Propel all of the domain-
specific activities are encoded only at the application level. 
Hierarchy within the application level is accomplished 
through standard C++ programming methodology. 
Propel’s other two layers (Supervisor and Executive) are 
meta-processes that monitor and manipulate the 
application level. 

Example 
Figure 2 shows the application level source code for an 
example that we will use throughout the paper. The 
example includes two parallel processes: Camera and 
Wheels.  The wheels iteratively move to a target while the 
Camera takes pictures until Camera detects that the 
wheels have stopped moving, at which time it takes a 
close-up picture.  When the Wheels process arrives at the 
target, it adds the fact “Not Moving” to the database, 
which signals to the waiting Camera process that it can 
proceed to take the close-up. Only the wheels portion is 
shown due to limited space. Line 58 shows use of the 
_PLANNING_ flag to determine if a command should be 
simulated. 

Search Space  

To recover from software failures, Propel searches through 
a space of program variations defined choice embedded in 
the code.   The application-level interface to the search 
engine includes choice points, fail statements, heuristics 
and meta methods.  The choices identify alternative 
subroutine calls and assignment statements.   

 Figure 3 shows the Process tree, where each node is a 
Unix Process. The tree illustrates the three process levels 
shown in Figure 1.  The root node in Figure 3 is the 
Executive process, the Supervisor processes are the second 

Figure 1:  Propel's three levels of processes:  
                 Application, Supervisor, and Executive. 

Application Processes:  
 - Compiled C++ code for nominal ops, FDIR, infrastructure 
 - Embedded library calls to search and constraint engine 
 - Processes run in either planning  or execution mode 
 - Instrumentation for computational state  

Planning  Supervisors 
- Search space of program choices 
- Start & Stop application procs 
  in planning mode 

Execution  Supervisors 
- Monitoring & verification 
- Start & Stop application procs 
  in execution mode. 
  

        Hardware Sensors & Actuators 

Executive Process 
- Coordinates planning and execution  
- Global interprocess communication 



 

 1 // Filename: rover.cpp  
 2 #include "propel.h" 
 ----------------------------------------------- 
 3 void initializePropel ()  
 4 {declare_Process(Wheels);   
 5  declare_Process(Camera);   
 6  declare_Goal(Move_1, "Move ?d");     
 7  declare_Goal(Move_2, "Move ?d");    
11  declare_Heuristic(preferFast);    
13  declare_Heuristic(preferShort); 
16  declare_TP("Not_Moving [1 30]");}   
  ----------------------------------------------- 
17  void Wheels ()     
18   {start_Task([5 10] Wheels {1 80} [6 100]);  
19    gotoLoc(getTarget()); 
20    add_Fact("Not Moving");      
21    execute_TP  ("Not_Moving", 1, 30); 
22    if (!wait_Task ("[0 20] waitForCamera {0 10}  
            constraint after Camera End [0 5]"))      
23       fail ("Wheels Timeout");}   
  ----------------------------------------------- 
24 void gotoLoc(Location* loc)    
25  {start_Task(gotoLoc {0 30}); 

26   int d, directions[] = {N, S, E, W}; 

27   int step = 0; 
28   _Var(step);   
29   while (!atLocation(loc))            
30     {d = (int) choose_item(directions, 4, 
                  "preferShort(?loc)", _Var(loc))     
31      choose_task("Move ? :preferFast()", _Var(d)); 
32      require(step++ < MAX_STEPS);}}  
  ----------------------------------------------- 
48  void Move_1 (void* direction) 
49   {Direction dir = *(int*)direction; 
50    if (dir == E) agent = NULL; //Fault Injection  
51    int x = agent->x; 
52    int y = agent->y; 
53    switch(dir)    
54      {case N: y++; break;                        
55       case S: y--; break;                       
56       case E: x++; break; 
57       case W: x--; break;}   
58    if (_PLANNING_) Simulate_Command("GoTo", x, y); 
59    else Execute_Command("GoTo", x, y);}  
 
Figure 2: Application-level source code for the Wheels process with  
embedded library calls (in bold text) to search and constraint engines.   
(The parallel Camera process is not shown due to space limitations) 

level, and Application level processes are everything 
below the second level. Subtrees below the Supervisor 
processes are search trees, where nodes correspond to 
application level processes and arcs represent branches at 
the embedded choice points.  The application level 
processes execute local heuristics to sort the choices using 
information available at the application level.  Global 
heuristics are used by the SupervisorFailure method for 
backtracking.   

 
Choice points.  Choice points identify alternative 
operations and resources. Lines 30 and 31 show examples. 
There are three types of choice points: choose_item is a  
non-deterministic assignment statement, choose_task is a 
non-deterministic subroutine call, and choose_fact is a 
non-deterministic database query.  They are non-
deterministic because executing them will have different 
outcomes based on heuristics and planner results. 

 When a choice point is executed by an application 
level process, that process calls fork() to create a child 
process that continues with the selected choice. The 
parent process remains suspended until backtracking 
occurs, and then the supervisor may wake up the parent 
to generate a new choice (fork a new child).  Heuristics 
and other user-specified methods are used for search 
control.  

 Figure 3 shows the search space for our example. The 
nodes at the application level represent computational 
continuations resulting from forks at choice points  Each 
choice point defines a set of disjunctive branches in the 
search tree.  One branch is created for each choice that is 
tried. Only choices that are actually tried cause new 
processes to be created.  

 
void* choose_item() - This statement will choose 
an element from a list of integers or pointers and 
functions as a non-deterministic assignment statement. 
The choices are sorted by the specified heuristic function. 
The <var> are passed into the heuristic. The return value 
is type void* and points to the object pointer selected 
from the list.  

The example on line 30 says: choose a direction from 
the array containing all directions (N,S,E,W are C 
"enums" that map to integers). The heuristic 
“preferShortest” is used to sort the choices in order of 
minimum “manhattan distance”, and the heuristic takes a 
target location as input.  Heuristics are declared at 
initialization (lines 10-13). 

 

choose_task() -   This statement will choose a 
subroutine that matches the given goal pattern, and 
functions as a non-deterministic subroutine call.    It calls 
one of several methods that all achieve the same goal 
pattern.  The example shown on line 30 will choose a 
task that matches the pattern “move ?” where ? is a 

variable bound to the move direction. This matches the 
goal declarations from lines 6 and 7, which says that 
either Move_1 or Move_2 could be called to achieve this 
goal.   
    The “?” is a place holder for the goal pattern variables  
There must be one goal pattern variable provided for each 
? in the pattern. This is similar to the way printf("%d 
%d", i, n) requires a var for each %.  The goal 
pattern variables are passed by reference so execution of a 
task that matches the pattern can change the value of the 
vars.  The heuristic is named on the right of the colon, so 
the example in line 31 says use heuristic "preferFastest". 
 
choose_fact()-  This statement will choose one fact 
from the database that matches the given fact pattern, and 
functions as a non-deterministic database query.  It queries 
the database for facts that match query pattern and returns 
one of the matching facts. The Executive maintains a 



 

  Executive 
     | 
     |__Wheels Execution Supervisor 
     |   |__(WX0, root, open) 
     |         |__(WX1, choice: NORTH, open) 
     |               |__(WX2, choice: Move_1, open) 
     |                     |__(WX3, choice: EAST, open) 
     |                           |__(WX4, choice: Move_1, failed: Segmentation Fault) 
     |                           |__(WX5=WP4, choice: Move_2, open) 
     |                                 |__(WX6=WP5, choice: EAST, open) 
     |                                       |__(WX7=WP7, choice: Move_2, open) 
     |                                             |__(WX8=WP8, choice: EAST, open) 
     |                                                   |__(WX9=WP10, choice: Move_2, Success) 

     |__Wheels Planning Supervisor 
         |__(WP0, root, open) 
               |__(WP1=WX1, choice: NORTH, open) 
                     |__(WP2=WX2, choice: Move_1, open) 
                           |__(WP3=WX3, choice: EAST, open) 
                                 |__(WP4, choice: Move_2, open) 
                                       |__(WP5, choice: EAST, open) 
                                             |__(WP6, choice: Move_1, failed: Segmentation Fault) 
                                             |__(WP7, choice: Move_2, open) 
                                                   |__(WP8, choice: EAST, open) 
                                                         |__(WP9, Move_1, failed: Segmentation Fault) 
                                                         |__(WP10, choice: Move_2, Success) 
 
Figure 3: Process Tree and Search Space. The levels of the tree correspond to three levels shown in figure 1. Each node is a process with unique PID.  
The top level process is the Executive, Level 2 contains supervisors that monitor and manipulate the application-level processes.  All nodes below the 
Supervisors are application-level processes running code defined in figure 2.  Each subtree below a supervisor (starting with "root" nodes WX0 and WP0) is 
a search space with branches that are disjunctive choices.   

database that can be used for interprocess communication 
between concurrent application processes (such as Wheels 
and Camera). The choose_fact() statement chooses 
bindings via unification with the DB.   
 
 Fail and Require statements.   Application level code 
may contain fail and require statements which cause 
search node failures and may trigger backtracking. These 
statements provide runtime verification capabilities by 
detecting when requirements are violated. Lines 23, and 
32 show examples of  fail and require statements.  
  

 The fail() statement causes the current process to 
inform its supervisor process that it failed, and then the 
process is suspended. The supervisorFailure() and 
executiveFailure() message handlers may be designed to 
handle the failure by transitioning from execution to 
planning or by backtracking within planning space. The 
example in line 23 triggers failure if the wait statement in 
line 22 timesout.   

   The require() statement is similar to the C++ Assert 
statement except that Assert requires user intervention.  
require(condition) will test the condition, calls “fail” if 
the condition is false. The condition represents a runtime 
verification requirement.  The example in line 32 triggers 
failure when the variable step exceeds MAX_STEPS.  
 
 Other failure types include exhausted choice points, 
unhandled exceptions, and temporal constraint violations. 
Any statement may trigger an implicit fail statement 
because any subroutine call has the potential to cause a 
segmentation fault or floating point exception. Any choose 
statement can trigger a failure when all choices have been 

exhausted (or no choices exist). Wait statements trigger a 
failure if they time out. When any of these failures occurs, 
the search node marked “failed”,   the process is 
suspended, and the supervisor  is notified. 
 

Failure Example: We’ve injected a software failure 
into our example to show how it is handled. In our 
example, an unhandled exception occurs because one of 
the two move operation (Move_1) dereferences a null 
pointer when it tries to move East. Line 50 sets the 
variable “agent”  to NULL when the direction is East. 
This causes the injected failure when the pointer is 
dereferenced on line 51.  The segmentation fault is 
trapped by propel, and treated as if a fail statement had 
been executed by the failing process.  See the online 
version of this paper for further explanation of how this 
failure is handled (Levinson 2005). 

Search Control 
Propel includes several methods to control search. The 
first and most important is the sparse search space. The 
search space is sparse because it only has branches at 
choice point locations. Deterministic subroutine calls like 
gotoLoc() (line 24) are not represented in the search 
space.  Most the application-level code can be 
deterministic with search triggered only at explicit choice 
point locations.   
 
 Situated Control Rules [Drummond 1989; Drummond 
et. al, 1993, Levinson 1995] are the second most 
important search control method. The planner and 
controllers communicate by exchanging condition-action 
rules called Situated Control Rules (SCRs).  SCRs provide 



 

choice point advice that describes preferences at choice 
pointes. They describe the context and outcome of prior 
choices made during planning and execution. These rules 
are the key to context sharing between planning and 
execution. Figure 4 shows the grammar and examples of 
SCRs.  
 One SCR is defined for each branch in the search tree 
shown in Figure 3. The name of the SCR is the name of 
the search node in that tree. The condition (left-hand side) 
of the rule is the control stack when branch occurred, and 
the action (right-hand side) is the choice associated with 
that branch.  An SCR says: “If the rule’s Condition part 
matches the current process’ control stack, and the choice 
outcome was not failure, then select choice (continue the 
process associated with choice). 
 In Figure 4, the control stack for Rule WX4 describes 
the execution context at search Node WX4 (shown in 
Figure 3). Rule WX4 says: The Wheels procedure was 
entered at line 18 of file rover.cpp (Figure 2) and then it 
called subroutine gotoLoc at line 24 of file rover.cpp, and 
the program counter (PC) says it was at line 31 when the 
branch occurred (at a choice point). The address and value 
for gotoLoc()'s local variables step and d are also recorded 
in the control stack. This rule will apply only when local 
variable step = 3.  
 This failure occurred because gotoLoc() called Move_1, 
which caused a segmentation fault (lines 50-51). After 
replanning, the executing process will look for planner 
advice about which choice to take. Rule WP10 says that 
the planner found a successful plan with choice “Move_2” 
when the program control stack was in the given state.  
The rule for node WX4 is used to tell the planner that the 
controller failed inside the task gotoLoc(). The planner 

uses this to avoid simulation of the “Move_1” choice until 
it has explored other tasks that achieve the same goal. 
 SCRs are collected when transitioning between 
planning and execution and vice versa. Collecting SCRs is 
similar to classical goal regression and form a partial 
policy. When a search success or failure occurs, SCRs are 
collected for the path from the given node to the root node. 
For example, when the first Wheels excution failure 
occurs at node WX4 in the tree above, SCRs are collected 
that describe the control stack, choice, and outcome for 
each node between WX4 and the root WX0.  
 The rules are passed from the controller to the planner 
so that the planner understands what choices the 
controller took. When the planner finds a workaround, 
similar rules will be collected from the planner's search 
tree, and used to tell the controller which choices led to a 
successful plan. When an application level process 
executes a choice point, SCRs are combined with 
heuristics to sort the choices.  
 
 Heuristic functions: Users can define local heuristics 
as preference functions that are called to sort choices 
locally at choice points. The heuristcs can use “less-than” 
predicates and the built-in function “SortChoices” to 
reorder the choices at the choice point. For example the 
following heuristic sorts choices into increasing values.  
Users can also define global heuristics by modifying the 
search function, BestNode(), which may control search 
using global information not available at the application 
level. BestNode() is called by the supervisors to determine 
which application level node (process) should be explored 
(continued) next.  Computational state information about 
application-level processes and the global database can 
also be used to implement different search strategies.   
 The default implementation of BestNode is similar to 
Reaction-First Search (RFS) [Drummond et. al., 1993]. 
The search is biased to first explore the controller's default 
behaviors  (reflexes defined by heuristics) to see if the 
controller’s “reactions” will work in the current situation. 
When the default reaction is inappropriate, the planner 
generates advice rules to override the default reactions.   

Supervisor and Executive Interface 
The application specific interface to meta processes 
includes the methods described below.  We describe the 
default behaviors for these methods but users can write 
their own versions to customize the coordination of 
planning and execution. 
 The SupervisorFailure() method is called when a 
Supervisor receives a SupervisorFailure message from the 
application level.  In planning mode it triggers 
backtracking, otherwise it suspends execution and then 
informs the Executive by sending an ExecutiveFailure 
message.   The SupervisorSuccess() method is called 
when the Supervisor receives a SupervisorSuccess 
message from the application level. It typically informs the 
Executive by sending an ExecutiveSuccess message.  

Situated Control Rule:  
IF <condition> Then <action> 
 
<condition> = (<StackFrame>+) 
<StackFrame> = (Frame: <subroutineEntryPoint>,  
                PC <programCounter> <var>*) 
<subroutineEntryPoint> = 
"subroutineName:lineNumber" 
<programCounter> = "filename:lineNumber" 
<var> = (Var: <varName> <varAddress> <varValue>) 
<action> = (<choice> <mode> <status>) 
<mode> = Planning | Execution 
<status> = success| failure | open 
 
RULE WX4  
IF ((Frame: gotoLoc:rover.cpp:24, PC rover.cpp:31 
      (Var: step 0xffbec9d0 0003) 
      (Var: d 0xffbec9d4 0003)) 
    (Frame: Wheels:rover.cpp:18, PC rover.cpp:18)) 
THEN Move_1 Execution failure  
 
RULE WP10  
IF ((Frame: gotoLoc:rover.cpp:24, PC rover.cpp:31 
      (Var: step 0xffbec9d0 0005) 
      (Var: d 0xffbec9d4 0003)) 
    (Frame: Wheels:rover.cpp:18, PC rover.cpp:18)) 
THEN Move_2 Planning success  
 
Figure 4: Situated Control Rule (SCR). Each branch in the search space is 
described by an SCR. The <condition> is the control stack capturing the 
computational state when the choice is made, and <action> is the choice. 



 

 The ExecutiveStartup() method is the Executive level 
startup handler called at startup time to initialize 
concurrent processes and propel structures, including the 
initial temporal constraint network. This method may start 
execution before planning or vice versa, or it may run 
them concurrently, depending on application.  
 This ExecutiveFailure() method is called by the 
Executive when it receives an ExecutiveFailure message 
from a Supervisor. The Executive knows whether it was a 
planning failure or an execution failure. In planning 
mode, this event indicates an exhausted search space.  
 The ExecutiveSuccess() method is called when the 
Executive receives an ExecutiveSuccess message from a 
Supervisor. This happens when application level process 
has an empty control stack during execution, or in 
planning mode when the subroutine which called the 
failed subroutine is popped off the stack. 
 These meta-level handlers allow users to specify 
different executive strategies including: a) predictive 
detection which simulates a program prior to execution,  
b) reactive detection where you only call the planner after 
an execution failure occurs, c) anytime planning which 
stops planning at anytime and collects SCRs for the partial 
plan, d) batch planning which plans until complete 
solution is found, and e) incremental replanning which 
only fixes the current execution failure before returning to 
execution. Another executive strategy could have the 
planner generate SCRs for failure contingencies to 
"robustify" the SCR policy.  

Search Process Walkthrough 
To illustrate how this works together we will walk through 
the steps that produced the results shown in Figure 3. To 
save space, only the Wheels process is described here.  
 First, the initialization routine shown in Figure 2 is 
executed.  This causes the executive and supervisors to be 
created along with application-level root nodes WX0, 
WP0. The root nodes are suspended after creation and the 
executiveStartup() method is executed, which in 
our case tells the Supervisors to start executing the Wheels 
process by activating root nodes WX0. 
 The Wheels execution proceeds through the choice 
points in the gotoLoc() routine. A branch in the tree is 
created for each choice point executed. Wheels proceed 
and generate the nodes WX1, WX2, WX3, and WX4.   
The node WX4 represents a process that threw a 
segmentation fault when it executed Move_1 in the East 
direction. When WX4 calls fail(), the Wheels Execution 
Supervisor is informed, and calls its 
SupervisorFailure() method which may do 
different things depending on whether it is a planning or 
execution failure. In this case the Supervisor informs the 
Executive of the failure and passes the SCR’s that describe 
the failure context. 
 The Executive’s executiveFailure() method is 
called and the Executive informs the Wheels Planning 
Supervisor to start executing the wheels procedure (in 
planning mode), and it passes the execution SCRs to the 

planning Supervisor where they are used to guide the 
search process down the same path as execution.  This 
guidance can be seen in nodes WP1-WP3, where the 
nodes are labeled with the name of the execution SCR that 
was used by the planner. For example WP1=WX1 means 
that the choice taken by the planner at node WP1 is based 
on the SCR that defines the branch for execution process 
WX1. This rule will only apply the first time line 31 is 
executed because the step variable = 1. 
 The planner follows the execution SCRs through node 
WP3 (notice that WP1-WP3 have equals signs). WP4 does 
not follow the execution choice because that is the choice 
that led to failure  in WX4. This rule, which identifies a 
choice that led to failure, is a rule of avoidance, and 
treated differently than other rules. SCRs that identify 
failure choices will cause that choice to be preferred last. It 
will be chosen only after all other choices failed. The 
planner delays the execution choice (Move_1) to the end 
of the search space since it is known to have failed. The 
planner chooses the next option, which is Move_2 (node 
WP4), which does not fail when moving east. The 
remaining planner nodes (WP4-WP10) are not guided by 
SCRs because execution never got that far. The planner 
chooses the failing Move_1 two more times in simulation 
(nodes WP6 and WP9) before reaching success (empty 
control stack) in at WP10.  
 The successful application process WP10 then informs 
the Wheels Planning Supervisor about the node success 
and the Supervisor informs the Executive, which executes 
its ExecSuccess() method, and collects SCRs for the 
path from node WP10 to node WP1. The Executive then 
informs the Wheels Execution Supervisor to continue 
execution using the planner’s SCRs as choice point 
advice.   

 The Wheels Execution Supervisor resumes execution by 
expanding node WX3  as determined by BestNode(). 
Since WX4 failed, its parent WX3 is the chronological 
backtracking choice, but it has been suspended since it 
spawned child WX4.  After being reactivated by the 
Supervisor, Node WX3 generates a new child WX5 based 
on the SCR from the planner’s WP4 node. This instructs 
the application code to choose Move_2 instead of 
Move_1. The remainder of the Execution processes 
(nodes WX5 - WX9) are guided by the planner’s SCRs as 
shown by the equals signs next to the node names. 

Temporal Constraint Engine  
Propel uses a Simple Temporal Network (STN) [Dechter 
et al., 1991] to monitor and control C++ program 
execution based on a declarative temporal model. As the 
propel application executes, progress is shadowed by the 
STN. The STN can be partially declared before the C++ 
applications are started but the network will also be 
dynamically generated as the C++ code executes.  

As execution proceeds, timepoint values  are 
constrained by actual execution times. When a subroutine 
is called, the STN is checked to see if it is ahead or behind 



 

schedule. If it enters the subroutine early, then it waits. If 
it is late, then fail() is called and the Supervisor is 
notified.  Static STN statements declare “background” 
parts of the temporal network that are defined before any 
tasks start execution, and dynamic statements extend the 
network dynamically and conditionally during task 
execution.   The following declarative statements can be 
embedded in C++ to modify the temporal constraint 
network. 
start_Task() - Lines 18 and 25 show examples of 

the start_Task statement, which declares temporal 
constraints on a C++ function. It creates two timepoints in 
the temporal network. One timepoint represents the start 
time of the function and another represents its end.  The 
Task_Start  on line 18 declares that Wheels has the 
following temporal constraints: Start Time in range[5 10], 
End Time in range [6 100], duration range {1 80}.    
wait_Task() – wait for a fact to be added to the 

database, or for temporal constraints to be satisfied (w/ 
timeout). Lines 22 and 23 show how the wait_Task 
statement and the fail statement can be combined.  Line 
22 says that the program should start waiting between 
time 0 and 20 and wait for a maximum of 20 seconds and 
wait for between 0 and 5 seconds after the Camera 
program ends. If the maximum duration of 20 seconds is 
reached before the camera program ends, then fail() is 
called.   
declare_TP() adds a new Timepoint to the temporal 

network when it is executed within a C++ function.  Other 
processes may share constraints with TP. Line 16 
illustrates the declare_TP statement. When this line is 
executed, a time point is created with lower bound of 1 
and an upper bound of 30, so the timepoint must be 
executed sometime between time 1 and time 30.    Other 
processes can establish constraints to this node using by 
referring to its label, which is “Not_Moving” in this 
example.  The new timepoint is not actually executed 
(collapsed to a singleton) until either start_task() or 
execute_TP() is executed which refers to the same 
timepoint label. 
execute_TP() is the same as declare_TP except it 

also executes the timepoint. This means that the value of 
the time point is collapsed to a singleton (the current time) 
and that time is propagated through the temporal network.  
Line 21 shows an example of execute_TP(). 

Related Work 
 Propel 1 [Levinson, 1995; Levinson 1994]. This paper 
presents Propel 2, which is very different from Propel 1 
because it uses compiled C++ as its action representation. 
In order to accommodate the fact that the application code 
is compiled, the Propel 2 architecture shown Figure 1 
differs significantly from Propel 1’s architecture.  
 Propel 1 had only one planner and one controller, 
which interpreted the same LISP action representation 

using their own instruction fetch-execute cycles. In Propel 
2, multiple planners and controllers start and stop 
compiled application code and they don’t have instruction 
fetch-execute cycles. Propel 2 extends Propel 1 by adding 
temporal constraints. It also extends SCRs to represent the 
state of compiled C++ code and to include rules of 
avoidance. Since Propel 2 enables planning to be 
embedded in C++, it is better suited for use in deployed 
autonomy applications. 
 
 ERE [Drummond, et. al, 1993]- Propel is a direct 
extension of ERE (the Entropy Reduction Engine). Propel 
incorporates several ERE features for integrated planning 
and execution including Reaction First Search and SCRs.  
Since ERE was never used to model software actions, a 
key difference is that Propel uses a C++ action 
representation compared to ERE's STRIPS-like action 
representation. 
 
 IDEA [Muscettola et. al, 2000]   The IDEA system is a 
unified planning and control system like Propel. However, 
IDEA executes the planner’s language while Propel plans 
with the controller’s language. IDEA’s controller executes 
plans by interpreting the planner’s declarative language. 
IDEA models software as black boxes and does not 
distinguish between a hardware or software black box. It 
can detect unexpected (software) inputs, outputs, and 
timing, but has a minimal model of the logic and 
computational state details relating the inputs to outputs. 
 
 KIRK/RMPL – [Kim, et. Al, 2001] William’s 
KIRK/RMPL system also provides a unified approach to 
planning and execution. It differs from Propel because it 
compiles procedural constructs into a declarative model 
which is then interpreted by during execution. KIRK is 
similar to IDEA this way, but differs from IDEA by using 
an explicit (declarative) model of control behavior. RMPL 
can represent control flow constructs such as loops and 
conditionals, which are compiled into a declarative model 
used for planning and then interpreted during execution.  

Future Work 
Propel 2 is currently in the working prototype stage. We 
have identified many open research issues including: 
  Backtracking issues such as using model-based 
diagnosis to provide dependency directed backtracking. 
We also must address issues such as deciding which 
concurrent processes must be planned together, and 
simulation with metric time (backtracking and warping 
forward). 
 Executive Strategies for managing transitions between 
planning and execution. This includes proactive planning, 
concurrent, and interleaved planning, anytime planning, 
and planning after a failure occurs.  This involves 
definition of the planner termination test which decides 
when the planner has “gotten around” the current failure 
so that execution may continue.  



 

 Software Sensors and Actuators. We currently insert 
macros to instrument the code by hand. Future work may 
use a separate preprocessing phase to automatically 
instrument the code, and also OS level instrumentation of 
computational state. We'd like to use OS-level actuators 
that may provide lightweight alternatives to fork(). We 
also need a better way to capture the control stack 
information used by SCRs. 
 Runtime Simulators are needed so the application code 
can run in _PLANNING_ mode (see Line 58). The 
simulators are needed only for physical actions and may 
provide different levels of abstraction and/or fidelity. 
Users can plug in application-specific simulators or use 
Propel's built-in database to keep track of simulated or 
executed state properties. Planning and execution have 
their own copies of the database.  
 Performance - The search nodes are currently 
implemented as computational continuations (created by 
the UNIX fork() command). Future work will involve 
using lower-overhead alternatives to fork(). Also could use 
branch and bound to limit the number of processes that 
remain open for backtracking. 

 
Evaluation Plan 

We will perform experiments to test our hypothesis that 
unified planning and execution with a procedural 
representation can significantly increase failure recovery 
scope and decrease cost. We will inject software failures 
into complex software and measure the coverage of 
existing recovery systems compared to our approach. We 
will measure the costs for human vs. autonomous 
recovery, and performance costs of the new methods. 

Conclusion 
Propel is a unified planning and execution system that 
uses a procedural representation. This is different from 
IDEA, which exclusively uses a declarative action 
representation.  
 Since most software is not written as a declarative 
model it tends to be outside the scope of a planner’s 
reasoning.  PROPEL was designed to increase the scope of 
the planner’s model to include software in order to address 
the problem of software failure detection and recovery.  
 Propel was designed to close the gap between the 
declarative action model used by a planner and the 
procedural languages used to develop real-world software. 
The representation is intended to be expressive enough to 
be used in system software including the planner and 
executive software. Motivation for using a procedural 
representation includes the following goals: 
 
• Include all software within the planner’s model in order 

to increase the scope of failure recovery to include 
infrastructure software failures.   

• Represent complex procedures including loops, 
conditionals, local variables, and multiprocessing. 

• Reduce the need to develop and maintain different 
models for the planner and execution system. 

• Reduce risk of loss of information in translation 
between execution and planning (and vice versa).  

 
Propel is both an architecture and a language. The 
architecture provides integrated planning and execution 
modules that monitor and manipulate application-level 
processes written in the Propel language.  The language is 
a library of methods for embedding search and temporal 
constraint information into C++, thus creating a 
"superset" of C++ like TDL.  This library provides an 
interface from the Propel application code to the 
supervisory meta-processes (the planning and execution 
modules), which monitor the application to provide failure 
detection and recovery. 
 The language provides an action representation that 
captures control constructs and can also be projected by a 
search-based planner. The planner can provide a useful 
partial plan even when it is interrupted after an arbitrary 
amount of computation. The planner and the controller 
share identical data structures and algorithms for 
interpreting a shared representation of control actions. 
   The other unified planning and execution systems 
emphasize recovery from hardware failures more than 
software failures.  
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