
Unified Planning and Execution for Autonomous Software Repair

Richard Levinson

Attention Control Systems, Inc.
650 Castro Street, Suite 120, PMB 197

Mountain View, CA 94041
rich@brainaid.com

Abstract
This paper addresses the need for more flexible
autonomous systems that detect and correct software
failures at runtime. We present new methods for integrated
planning and execution that enable runtime verification
and repair for software failures, and explore the related
issue of integrated procedural and declarative action
representations.
 We present a library for embedding declarative planning
methods within procedural C++ code. The library provides
an interface to supervisory processes, which monitor
software execution and provide last-resort error recovery
after pre-programmed error handlers fail. The library
provides an interface to search and temporal constraint
engines maintained by the meta-processes. The planner
and controller use the same procedural representation in
order to share context (computational state) between
planning and execution.

Motivation

 Limited Autonomy. Today’s autonomous systems
provide more coverage for hardware failures than software
failures. If they cannot represent and reason about
software failures, they are doomed to blind spots and will
have limited autonomy. There are several reasons why
software failure cannot be avoided including: limited time
and information at design time, limited time and resources
for running test cases, changing operating conditions and
changing mission requirements. Our goal is to include
more software within the scope of recovery and develop
autonomous systems that repair their own software.
 Limited Architectures. Currently, most system
software is outside the scope of plan-based recovery
because it is not written in the planner’s modeling
language. To increase model scope, the planner and
controller must share computational state information
about failure and repair contexts. This is challenging
because integrated planning and execution traditionally
involves translating between planners that use declarative
languages and controllers that use procedural languages.
Major problems caused by this language barrier include:

 Redundant & Low Fidelity Models. There is a need to
develop and maintain a declarative model of the execution
system using a planner’s modeling language. The
planner’s model is redundant with the execution “model”
(i.e. the software). The planner’s model of software is low

fidelity since much of the computational state is hidden in
a black box model of software. The redundant planning
model may not match the actual execution software, and it
is difficult to maintain the model and the code in parallel.
 Information loss is nearly guaranteed when translating
between the controller’s procedural language and
planner’s declarative language, which are typically
developed independently and optimized for different
purposes. This information loss reduces the planner’s
understanding about execution context, and vice versa.
 System complexity is increased because of the need to
translate between the two languages. There is an
increased need to develop ad hoc translators between the
two languages, and a lot of the integration effort is
devoted towards accommodating specific language
differences.

Architecture Overview
Our approach to increasing the scope of failure recovery
and removing the language barrier is called the Program
Planning and Execution Language (Propel). Propel
provides a library for integration between C++ and
supervisory processes that detect and correct software
failures. The library includes new methods for integrating
search and temporal constraints within C++ applications.
 We also present new methods for integrated planning
and execution with improved computational context
switching and sharing capabilities compared with existing
methods. These new methods allow us to increase the
scope of error handling to include the system’s software
infrastructure. Additionally, the planner and controller’s
action representations are unified so more context
information can be preserved during transitions between
execution and planning.
 Figure 1 shows the three different process levels within
Propel: The Application, Supervisor, and Executive levels.
The Application level contains all of the domain-specific
processes. The Executive and Supervisor levels are meta-
processes (they monitor and manipulate the application
processes) in order to detect and correct software failures.

 The Application level executes C++ code extended
with the Propel Library Interface to meta-level supervisory
processes. The code contains declarative statements that
interface to search and temporal constraint engines.

Choice points embedded in the code describe alternative
operations and resources, and define a space of program
variations. The Application level has information only
about its own execution environment, like any other C++
process. The application level sends status messages,
computational state information, and queries to the meta-
level supervisors, and are started and stopped by the
supervisors.

 The Supervisor level processes perform runtime
monitoring,, verification, and recovery of application level
processes. They manage search spaces of application level
processes. One planning supervisor and one execution
supervisor is created for each parallel process in the
application. The planner provides a last-resort failure
handler after all application-level fault protection has
failed. The term "planner" refers to a Planning Supervisor
and the term "controller" to refer to an Execution
Supervisor.
 The Planners and controllers start, monitor, and stop
the same compiled application-level code in the same
environment. The difference is that the planners run the
application level code with a _PLANNING_ flag true but
the controllers run the code with that flag false.
Application code accesses that flag to determine if it is
running in planning (simulation) or execution mode.
 Application code may execute different branches
depending on the status of this flag. Subroutines which
send out physical actuator commands may simulate the
commands when the planning flag is true instead of
sending out actual actuator commands. The only
procedures that require simulation are those that interact

directly with hardware actuators because we want to block
the actuator commands during simulation, however, any
procedure can be simulated in order to skip details. All of
this requires runtime simulation, which may involve
models of various levels of fidelity. The simulation
branches may also include choice points and probabilities
so that high probability variant outcomes may be
simulated. Application processes in planning and
execution mode communicate via rules, called Situated
Control Rules (SCRs) [Drummond 1989], that provide
choice point advice about what to do at the choice points
embedded in the code.

 The Executive level is a single process that manages
transitions between planning and execution and manages
databases that enable inter-process communication and
synchronization. This involves sending messages to the
supervisor processes. The executive also handles requests
for information from the application level.

 Three levels but not 3T: Although Propel has three
levels, it is significantly different than the 3T system
[Bonasso, et., al., 1997]. In 3T, each level encodes
domain-specific activities, but in Propel all of the domain-
specific activities are encoded only at the application level.
Hierarchy within the application level is accomplished
through standard C++ programming methodology.
Propel’s other two layers (Supervisor and Executive) are
meta-processes that monitor and manipulate the
application level.

Example
Figure 2 shows the application level source code for an
example that we will use throughout the paper. The
example includes two parallel processes: Camera and
Wheels. The wheels iteratively move to a target while the
Camera takes pictures until Camera detects that the
wheels have stopped moving, at which time it takes a
close-up picture. When the Wheels process arrives at the
target, it adds the fact “Not Moving” to the database,
which signals to the waiting Camera process that it can
proceed to take the close-up. Only the wheels portion is
shown due to limited space. Line 58 shows use of the
PLANNING flag to determine if a command should be
simulated.

Search Space

To recover from software failures, Propel searches through
a space of program variations defined choice embedded in
the code. The application-level interface to the search
engine includes choice points, fail statements, heuristics
and meta methods. The choices identify alternative
subroutine calls and assignment statements.

 Figure 3 shows the Process tree, where each node is a
Unix Process. The tree illustrates the three process levels
shown in Figure 1. The root node in Figure 3 is the
Executive process, the Supervisor processes are the second

Figure 1: Propel's three levels of processes:
 Application, Supervisor, and Executive.

Application Processes:
 - Compiled C++ code for nominal ops, FDIR, infrastructure
 - Embedded library calls to search and constraint engine
 - Processes run in either planning or execution mode
 - Instrumentation for computational state

Planning Supervisors
- Search space of program choices
- Start & Stop application procs
 in planning mode

Execution Supervisors
- Monitoring & verification
- Start & Stop application procs
 in execution mode.

 Hardware Sensors & Actuators

Executive Process
- Coordinates planning and execution
- Global interprocess communication

 1 // Filename: rover.cpp
 2 #include "propel.h"

 3 void initializePropel ()
 4 {declare_Process(Wheels);
 5 declare_Process(Camera);
 6 declare_Goal(Move_1, "Move ?d");
 7 declare_Goal(Move_2, "Move ?d");
11 declare_Heuristic(preferFast);
13 declare_Heuristic(preferShort);
16 declare_TP("Not_Moving [1 30]");}

17 void Wheels ()
18 {start_Task([5 10] Wheels {1 80} [6 100]);
19 gotoLoc(getTarget());
20 add_Fact("Not Moving");
21 execute_TP ("Not_Moving", 1, 30);
22 if (!wait_Task ("[0 20] waitForCamera {0 10}
 constraint after Camera End [0 5]"))
23 fail ("Wheels Timeout");}

24 void gotoLoc(Location* loc)
25 {start_Task(gotoLoc {0 30});

26 int d, directions[] = {N, S, E, W};

27 int step = 0;
28 _Var(step);
29 while (!atLocation(loc))
30 {d = (int) choose_item(directions, 4,
 "preferShort(?loc)", _Var(loc))
31 choose_task("Move ? :preferFast()", _Var(d));
32 require(step++ < MAX_STEPS);}}

48 void Move_1 (void* direction)
49 {Direction dir = *(int*)direction;
50 if (dir == E) agent = NULL; //Fault Injection
51 int x = agent->x;
52 int y = agent->y;
53 switch(dir)
54 {case N: y++; break;
55 case S: y--; break;
56 case E: x++; break;
57 case W: x--; break;}
58 if (_PLANNING_) Simulate_Command("GoTo", x, y);
59 else Execute_Command("GoTo", x, y);}

Figure 2: Application-level source code for the Wheels process with
embedded library calls (in bold text) to search and constraint engines.
(The parallel Camera process is not shown due to space limitations)

level, and Application level processes are everything
below the second level. Subtrees below the Supervisor
processes are search trees, where nodes correspond to
application level processes and arcs represent branches at
the embedded choice points. The application level
processes execute local heuristics to sort the choices using
information available at the application level. Global
heuristics are used by the SupervisorFailure method for
backtracking.

Choice points. Choice points identify alternative
operations and resources. Lines 30 and 31 show examples.
There are three types of choice points: choose_item is a
non-deterministic assignment statement, choose_task is a
non-deterministic subroutine call, and choose_fact is a
non-deterministic database query. They are non-
deterministic because executing them will have different
outcomes based on heuristics and planner results.

 When a choice point is executed by an application
level process, that process calls fork() to create a child
process that continues with the selected choice. The
parent process remains suspended until backtracking
occurs, and then the supervisor may wake up the parent
to generate a new choice (fork a new child). Heuristics
and other user-specified methods are used for search
control.

 Figure 3 shows the search space for our example. The
nodes at the application level represent computational
continuations resulting from forks at choice points Each
choice point defines a set of disjunctive branches in the
search tree. One branch is created for each choice that is
tried. Only choices that are actually tried cause new
processes to be created.

void* choose_item() - This statement will choose
an element from a list of integers or pointers and
functions as a non-deterministic assignment statement.
The choices are sorted by the specified heuristic function.
The <var> are passed into the heuristic. The return value
is type void* and points to the object pointer selected
from the list.

The example on line 30 says: choose a direction from
the array containing all directions (N,S,E,W are C
"enums" that map to integers). The heuristic
“preferShortest” is used to sort the choices in order of
minimum “manhattan distance”, and the heuristic takes a
target location as input. Heuristics are declared at
initialization (lines 10-13).

choose_task() - This statement will choose a
subroutine that matches the given goal pattern, and
functions as a non-deterministic subroutine call. It calls
one of several methods that all achieve the same goal
pattern. The example shown on line 30 will choose a
task that matches the pattern “move ?” where ? is a

variable bound to the move direction. This matches the
goal declarations from lines 6 and 7, which says that
either Move_1 or Move_2 could be called to achieve this
goal.
 The “?” is a place holder for the goal pattern variables
There must be one goal pattern variable provided for each
? in the pattern. This is similar to the way printf("%d
%d", i, n) requires a var for each %. The goal
pattern variables are passed by reference so execution of a
task that matches the pattern can change the value of the
vars. The heuristic is named on the right of the colon, so
the example in line 31 says use heuristic "preferFastest".

choose_fact()- This statement will choose one fact
from the database that matches the given fact pattern, and
functions as a non-deterministic database query. It queries
the database for facts that match query pattern and returns
one of the matching facts. The Executive maintains a

 Executive
 |
 |__Wheels Execution Supervisor
 | |__(WX0, root, open)
 | |__(WX1, choice: NORTH, open)
 | |__(WX2, choice: Move_1, open)
 | |__(WX3, choice: EAST, open)
 | |__(WX4, choice: Move_1, failed: Segmentation Fault)
 | |__(WX5=WP4, choice: Move_2, open)
 | |__(WX6=WP5, choice: EAST, open)
 | |__(WX7=WP7, choice: Move_2, open)
 | |__(WX8=WP8, choice: EAST, open)
 | |__(WX9=WP10, choice: Move_2, Success)

 |__Wheels Planning Supervisor
 |__(WP0, root, open)
 |__(WP1=WX1, choice: NORTH, open)
 |__(WP2=WX2, choice: Move_1, open)
 |__(WP3=WX3, choice: EAST, open)
 |__(WP4, choice: Move_2, open)
 |__(WP5, choice: EAST, open)
 |__(WP6, choice: Move_1, failed: Segmentation Fault)
 |__(WP7, choice: Move_2, open)
 |__(WP8, choice: EAST, open)
 |__(WP9, Move_1, failed: Segmentation Fault)
 |__(WP10, choice: Move_2, Success)

Figure 3: Process Tree and Search Space. The levels of the tree correspond to three levels shown in figure 1. Each node is a process with unique PID.
The top level process is the Executive, Level 2 contains supervisors that monitor and manipulate the application-level processes. All nodes below the
Supervisors are application-level processes running code defined in figure 2. Each subtree below a supervisor (starting with "root" nodes WX0 and WP0) is
a search space with branches that are disjunctive choices.

database that can be used for interprocess communication
between concurrent application processes (such as Wheels
and Camera). The choose_fact() statement chooses
bindings via unification with the DB.

 Fail and Require statements. Application level code
may contain fail and require statements which cause
search node failures and may trigger backtracking. These
statements provide runtime verification capabilities by
detecting when requirements are violated. Lines 23, and
32 show examples of fail and require statements.

 The fail() statement causes the current process to
inform its supervisor process that it failed, and then the
process is suspended. The supervisorFailure() and
executiveFailure() message handlers may be designed to
handle the failure by transitioning from execution to
planning or by backtracking within planning space. The
example in line 23 triggers failure if the wait statement in
line 22 timesout.

 The require() statement is similar to the C++ Assert
statement except that Assert requires user intervention.
require(condition) will test the condition, calls “fail” if
the condition is false. The condition represents a runtime
verification requirement. The example in line 32 triggers
failure when the variable step exceeds MAX_STEPS.

 Other failure types include exhausted choice points,
unhandled exceptions, and temporal constraint violations.
Any statement may trigger an implicit fail statement
because any subroutine call has the potential to cause a
segmentation fault or floating point exception. Any choose
statement can trigger a failure when all choices have been

exhausted (or no choices exist). Wait statements trigger a
failure if they time out. When any of these failures occurs,
the search node marked “failed”, the process is
suspended, and the supervisor is notified.

Failure Example: We’ve injected a software failure
into our example to show how it is handled. In our
example, an unhandled exception occurs because one of
the two move operation (Move_1) dereferences a null
pointer when it tries to move East. Line 50 sets the
variable “agent” to NULL when the direction is East.
This causes the injected failure when the pointer is
dereferenced on line 51. The segmentation fault is
trapped by propel, and treated as if a fail statement had
been executed by the failing process. See the online
version of this paper for further explanation of how this
failure is handled (Levinson 2005).

Search Control
Propel includes several methods to control search. The
first and most important is the sparse search space. The
search space is sparse because it only has branches at
choice point locations. Deterministic subroutine calls like
gotoLoc() (line 24) are not represented in the search
space. Most the application-level code can be
deterministic with search triggered only at explicit choice
point locations.

 Situated Control Rules [Drummond 1989; Drummond
et. al, 1993, Levinson 1995] are the second most
important search control method. The planner and
controllers communicate by exchanging condition-action
rules called Situated Control Rules (SCRs). SCRs provide

choice point advice that describes preferences at choice
pointes. They describe the context and outcome of prior
choices made during planning and execution. These rules
are the key to context sharing between planning and
execution. Figure 4 shows the grammar and examples of
SCRs.
 One SCR is defined for each branch in the search tree
shown in Figure 3. The name of the SCR is the name of
the search node in that tree. The condition (left-hand side)
of the rule is the control stack when branch occurred, and
the action (right-hand side) is the choice associated with
that branch. An SCR says: “If the rule’s Condition part
matches the current process’ control stack, and the choice
outcome was not failure, then select choice (continue the
process associated with choice).
 In Figure 4, the control stack for Rule WX4 describes
the execution context at search Node WX4 (shown in
Figure 3). Rule WX4 says: The Wheels procedure was
entered at line 18 of file rover.cpp (Figure 2) and then it
called subroutine gotoLoc at line 24 of file rover.cpp, and
the program counter (PC) says it was at line 31 when the
branch occurred (at a choice point). The address and value
for gotoLoc()'s local variables step and d are also recorded
in the control stack. This rule will apply only when local
variable step = 3.
 This failure occurred because gotoLoc() called Move_1,
which caused a segmentation fault (lines 50-51). After
replanning, the executing process will look for planner
advice about which choice to take. Rule WP10 says that
the planner found a successful plan with choice “Move_2”
when the program control stack was in the given state.
The rule for node WX4 is used to tell the planner that the
controller failed inside the task gotoLoc(). The planner

uses this to avoid simulation of the “Move_1” choice until
it has explored other tasks that achieve the same goal.
 SCRs are collected when transitioning between
planning and execution and vice versa. Collecting SCRs is
similar to classical goal regression and form a partial
policy. When a search success or failure occurs, SCRs are
collected for the path from the given node to the root node.
For example, when the first Wheels excution failure
occurs at node WX4 in the tree above, SCRs are collected
that describe the control stack, choice, and outcome for
each node between WX4 and the root WX0.
 The rules are passed from the controller to the planner
so that the planner understands what choices the
controller took. When the planner finds a workaround,
similar rules will be collected from the planner's search
tree, and used to tell the controller which choices led to a
successful plan. When an application level process
executes a choice point, SCRs are combined with
heuristics to sort the choices.

 Heuristic functions: Users can define local heuristics
as preference functions that are called to sort choices
locally at choice points. The heuristcs can use “less-than”
predicates and the built-in function “SortChoices” to
reorder the choices at the choice point. For example the
following heuristic sorts choices into increasing values.
Users can also define global heuristics by modifying the
search function, BestNode(), which may control search
using global information not available at the application
level. BestNode() is called by the supervisors to determine
which application level node (process) should be explored
(continued) next. Computational state information about
application-level processes and the global database can
also be used to implement different search strategies.
 The default implementation of BestNode is similar to
Reaction-First Search (RFS) [Drummond et. al., 1993].
The search is biased to first explore the controller's default
behaviors (reflexes defined by heuristics) to see if the
controller’s “reactions” will work in the current situation.
When the default reaction is inappropriate, the planner
generates advice rules to override the default reactions.

Supervisor and Executive Interface
The application specific interface to meta processes
includes the methods described below. We describe the
default behaviors for these methods but users can write
their own versions to customize the coordination of
planning and execution.
 The SupervisorFailure() method is called when a
Supervisor receives a SupervisorFailure message from the
application level. In planning mode it triggers
backtracking, otherwise it suspends execution and then
informs the Executive by sending an ExecutiveFailure
message. The SupervisorSuccess() method is called
when the Supervisor receives a SupervisorSuccess
message from the application level. It typically informs the
Executive by sending an ExecutiveSuccess message.

Situated Control Rule:
IF <condition> Then <action>

<condition> = (<StackFrame>+)
<StackFrame> = (Frame: <subroutineEntryPoint>,
 PC <programCounter> <var>*)
<subroutineEntryPoint> =
"subroutineName:lineNumber"
<programCounter> = "filename:lineNumber"
<var> = (Var: <varName> <varAddress> <varValue>)
<action> = (<choice> <mode> <status>)
<mode> = Planning | Execution
<status> = success| failure | open

RULE WX4
IF ((Frame: gotoLoc:rover.cpp:24, PC rover.cpp:31
 (Var: step 0xffbec9d0 0003)
 (Var: d 0xffbec9d4 0003))
 (Frame: Wheels:rover.cpp:18, PC rover.cpp:18))
THEN Move_1 Execution failure

RULE WP10
IF ((Frame: gotoLoc:rover.cpp:24, PC rover.cpp:31
 (Var: step 0xffbec9d0 0005)
 (Var: d 0xffbec9d4 0003))
 (Frame: Wheels:rover.cpp:18, PC rover.cpp:18))
THEN Move_2 Planning success

Figure 4: Situated Control Rule (SCR). Each branch in the search space is
described by an SCR. The <condition> is the control stack capturing the
computational state when the choice is made, and <action> is the choice.

 The ExecutiveStartup() method is the Executive level
startup handler called at startup time to initialize
concurrent processes and propel structures, including the
initial temporal constraint network. This method may start
execution before planning or vice versa, or it may run
them concurrently, depending on application.
 This ExecutiveFailure() method is called by the
Executive when it receives an ExecutiveFailure message
from a Supervisor. The Executive knows whether it was a
planning failure or an execution failure. In planning
mode, this event indicates an exhausted search space.
 The ExecutiveSuccess() method is called when the
Executive receives an ExecutiveSuccess message from a
Supervisor. This happens when application level process
has an empty control stack during execution, or in
planning mode when the subroutine which called the
failed subroutine is popped off the stack.
 These meta-level handlers allow users to specify
different executive strategies including: a) predictive
detection which simulates a program prior to execution,
b) reactive detection where you only call the planner after
an execution failure occurs, c) anytime planning which
stops planning at anytime and collects SCRs for the partial
plan, d) batch planning which plans until complete
solution is found, and e) incremental replanning which
only fixes the current execution failure before returning to
execution. Another executive strategy could have the
planner generate SCRs for failure contingencies to
"robustify" the SCR policy.

Search Process Walkthrough
To illustrate how this works together we will walk through
the steps that produced the results shown in Figure 3. To
save space, only the Wheels process is described here.
 First, the initialization routine shown in Figure 2 is
executed. This causes the executive and supervisors to be
created along with application-level root nodes WX0,
WP0. The root nodes are suspended after creation and the
executiveStartup() method is executed, which in
our case tells the Supervisors to start executing the Wheels
process by activating root nodes WX0.
 The Wheels execution proceeds through the choice
points in the gotoLoc() routine. A branch in the tree is
created for each choice point executed. Wheels proceed
and generate the nodes WX1, WX2, WX3, and WX4.
The node WX4 represents a process that threw a
segmentation fault when it executed Move_1 in the East
direction. When WX4 calls fail(), the Wheels Execution
Supervisor is informed, and calls its
SupervisorFailure() method which may do
different things depending on whether it is a planning or
execution failure. In this case the Supervisor informs the
Executive of the failure and passes the SCR’s that describe
the failure context.
 The Executive’s executiveFailure() method is
called and the Executive informs the Wheels Planning
Supervisor to start executing the wheels procedure (in
planning mode), and it passes the execution SCRs to the

planning Supervisor where they are used to guide the
search process down the same path as execution. This
guidance can be seen in nodes WP1-WP3, where the
nodes are labeled with the name of the execution SCR that
was used by the planner. For example WP1=WX1 means
that the choice taken by the planner at node WP1 is based
on the SCR that defines the branch for execution process
WX1. This rule will only apply the first time line 31 is
executed because the step variable = 1.
 The planner follows the execution SCRs through node
WP3 (notice that WP1-WP3 have equals signs). WP4 does
not follow the execution choice because that is the choice
that led to failure in WX4. This rule, which identifies a
choice that led to failure, is a rule of avoidance, and
treated differently than other rules. SCRs that identify
failure choices will cause that choice to be preferred last. It
will be chosen only after all other choices failed. The
planner delays the execution choice (Move_1) to the end
of the search space since it is known to have failed. The
planner chooses the next option, which is Move_2 (node
WP4), which does not fail when moving east. The
remaining planner nodes (WP4-WP10) are not guided by
SCRs because execution never got that far. The planner
chooses the failing Move_1 two more times in simulation
(nodes WP6 and WP9) before reaching success (empty
control stack) in at WP10.
 The successful application process WP10 then informs
the Wheels Planning Supervisor about the node success
and the Supervisor informs the Executive, which executes
its ExecSuccess() method, and collects SCRs for the
path from node WP10 to node WP1. The Executive then
informs the Wheels Execution Supervisor to continue
execution using the planner’s SCRs as choice point
advice.

 The Wheels Execution Supervisor resumes execution by
expanding node WX3 as determined by BestNode().
Since WX4 failed, its parent WX3 is the chronological
backtracking choice, but it has been suspended since it
spawned child WX4. After being reactivated by the
Supervisor, Node WX3 generates a new child WX5 based
on the SCR from the planner’s WP4 node. This instructs
the application code to choose Move_2 instead of
Move_1. The remainder of the Execution processes
(nodes WX5 - WX9) are guided by the planner’s SCRs as
shown by the equals signs next to the node names.

Temporal Constraint Engine
Propel uses a Simple Temporal Network (STN) [Dechter
et al., 1991] to monitor and control C++ program
execution based on a declarative temporal model. As the
propel application executes, progress is shadowed by the
STN. The STN can be partially declared before the C++
applications are started but the network will also be
dynamically generated as the C++ code executes.

As execution proceeds, timepoint values are
constrained by actual execution times. When a subroutine
is called, the STN is checked to see if it is ahead or behind

schedule. If it enters the subroutine early, then it waits. If
it is late, then fail() is called and the Supervisor is
notified. Static STN statements declare “background”
parts of the temporal network that are defined before any
tasks start execution, and dynamic statements extend the
network dynamically and conditionally during task
execution. The following declarative statements can be
embedded in C++ to modify the temporal constraint
network.
start_Task() - Lines 18 and 25 show examples of

the start_Task statement, which declares temporal
constraints on a C++ function. It creates two timepoints in
the temporal network. One timepoint represents the start
time of the function and another represents its end. The
Task_Start on line 18 declares that Wheels has the
following temporal constraints: Start Time in range[5 10],
End Time in range [6 100], duration range {1 80}.
wait_Task() – wait for a fact to be added to the

database, or for temporal constraints to be satisfied (w/
timeout). Lines 22 and 23 show how the wait_Task
statement and the fail statement can be combined. Line
22 says that the program should start waiting between
time 0 and 20 and wait for a maximum of 20 seconds and
wait for between 0 and 5 seconds after the Camera
program ends. If the maximum duration of 20 seconds is
reached before the camera program ends, then fail() is
called.
declare_TP() adds a new Timepoint to the temporal

network when it is executed within a C++ function. Other
processes may share constraints with TP. Line 16
illustrates the declare_TP statement. When this line is
executed, a time point is created with lower bound of 1
and an upper bound of 30, so the timepoint must be
executed sometime between time 1 and time 30. Other
processes can establish constraints to this node using by
referring to its label, which is “Not_Moving” in this
example. The new timepoint is not actually executed
(collapsed to a singleton) until either start_task() or
execute_TP() is executed which refers to the same
timepoint label.
execute_TP() is the same as declare_TP except it

also executes the timepoint. This means that the value of
the time point is collapsed to a singleton (the current time)
and that time is propagated through the temporal network.
Line 21 shows an example of execute_TP().

Related Work
 Propel 1 [Levinson, 1995; Levinson 1994]. This paper
presents Propel 2, which is very different from Propel 1
because it uses compiled C++ as its action representation.
In order to accommodate the fact that the application code
is compiled, the Propel 2 architecture shown Figure 1
differs significantly from Propel 1’s architecture.
 Propel 1 had only one planner and one controller,
which interpreted the same LISP action representation

using their own instruction fetch-execute cycles. In Propel
2, multiple planners and controllers start and stop
compiled application code and they don’t have instruction
fetch-execute cycles. Propel 2 extends Propel 1 by adding
temporal constraints. It also extends SCRs to represent the
state of compiled C++ code and to include rules of
avoidance. Since Propel 2 enables planning to be
embedded in C++, it is better suited for use in deployed
autonomy applications.

 ERE [Drummond, et. al, 1993]- Propel is a direct
extension of ERE (the Entropy Reduction Engine). Propel
incorporates several ERE features for integrated planning
and execution including Reaction First Search and SCRs.
Since ERE was never used to model software actions, a
key difference is that Propel uses a C++ action
representation compared to ERE's STRIPS-like action
representation.

 IDEA [Muscettola et. al, 2000] The IDEA system is a
unified planning and control system like Propel. However,
IDEA executes the planner’s language while Propel plans
with the controller’s language. IDEA’s controller executes
plans by interpreting the planner’s declarative language.
IDEA models software as black boxes and does not
distinguish between a hardware or software black box. It
can detect unexpected (software) inputs, outputs, and
timing, but has a minimal model of the logic and
computational state details relating the inputs to outputs.

 KIRK/RMPL – [Kim, et. Al, 2001] William’s
KIRK/RMPL system also provides a unified approach to
planning and execution. It differs from Propel because it
compiles procedural constructs into a declarative model
which is then interpreted by during execution. KIRK is
similar to IDEA this way, but differs from IDEA by using
an explicit (declarative) model of control behavior. RMPL
can represent control flow constructs such as loops and
conditionals, which are compiled into a declarative model
used for planning and then interpreted during execution.

Future Work
Propel 2 is currently in the working prototype stage. We
have identified many open research issues including:
 Backtracking issues such as using model-based
diagnosis to provide dependency directed backtracking.
We also must address issues such as deciding which
concurrent processes must be planned together, and
simulation with metric time (backtracking and warping
forward).
 Executive Strategies for managing transitions between
planning and execution. This includes proactive planning,
concurrent, and interleaved planning, anytime planning,
and planning after a failure occurs. This involves
definition of the planner termination test which decides
when the planner has “gotten around” the current failure
so that execution may continue.

 Software Sensors and Actuators. We currently insert
macros to instrument the code by hand. Future work may
use a separate preprocessing phase to automatically
instrument the code, and also OS level instrumentation of
computational state. We'd like to use OS-level actuators
that may provide lightweight alternatives to fork(). We
also need a better way to capture the control stack
information used by SCRs.
 Runtime Simulators are needed so the application code
can run in _PLANNING_ mode (see Line 58). The
simulators are needed only for physical actions and may
provide different levels of abstraction and/or fidelity.
Users can plug in application-specific simulators or use
Propel's built-in database to keep track of simulated or
executed state properties. Planning and execution have
their own copies of the database.
 Performance - The search nodes are currently
implemented as computational continuations (created by
the UNIX fork() command). Future work will involve
using lower-overhead alternatives to fork(). Also could use
branch and bound to limit the number of processes that
remain open for backtracking.

Evaluation Plan

We will perform experiments to test our hypothesis that
unified planning and execution with a procedural
representation can significantly increase failure recovery
scope and decrease cost. We will inject software failures
into complex software and measure the coverage of
existing recovery systems compared to our approach. We
will measure the costs for human vs. autonomous
recovery, and performance costs of the new methods.

Conclusion
Propel is a unified planning and execution system that
uses a procedural representation. This is different from
IDEA, which exclusively uses a declarative action
representation.
 Since most software is not written as a declarative
model it tends to be outside the scope of a planner’s
reasoning. PROPEL was designed to increase the scope of
the planner’s model to include software in order to address
the problem of software failure detection and recovery.
 Propel was designed to close the gap between the
declarative action model used by a planner and the
procedural languages used to develop real-world software.
The representation is intended to be expressive enough to
be used in system software including the planner and
executive software. Motivation for using a procedural
representation includes the following goals:

• Include all software within the planner’s model in order

to increase the scope of failure recovery to include
infrastructure software failures.

• Represent complex procedures including loops,
conditionals, local variables, and multiprocessing.

• Reduce the need to develop and maintain different
models for the planner and execution system.

• Reduce risk of loss of information in translation
between execution and planning (and vice versa).

Propel is both an architecture and a language. The
architecture provides integrated planning and execution
modules that monitor and manipulate application-level
processes written in the Propel language. The language is
a library of methods for embedding search and temporal
constraint information into C++, thus creating a
"superset" of C++ like TDL. This library provides an
interface from the Propel application code to the
supervisory meta-processes (the planning and execution
modules), which monitor the application to provide failure
detection and recovery.
 The language provides an action representation that
captures control constructs and can also be projected by a
search-based planner. The planner can provide a useful
partial plan even when it is interrupted after an arbitrary
amount of computation. The planner and the controller
share identical data structures and algorithms for
interpreting a shared representation of control actions.
 The other unified planning and execution systems
emphasize recovery from hardware failures more than
software failures.

References
Bonasso, R, Firby R., Gat, E., Kortenkamp, D., Miller, D.,
and Slack, M. Experiences with an Architecture for
Intelligent, Reactive Agents, in Journal of Experimental
and Theoretical Artificial Intelligence , January, 1997.

Dechter, R, Meiri, I. and Pearl, J. 1991. Temporal
Constraint Networks. Artificial Intelligence, 49:61-95.

Drummond. M. Situated Control Rules. 1989.
Proceedings of Knowledge Representation 1999 (KR’89).

Drummond, M., Bresina, J., Swanson, K., Levinson, R.
1993. Reaction-First Search: Incremental Planning with
Guaranteed Performance Improvement. Proceedings. of
IJCAI-93. Chambrey, France.

Kim P., Williams B., Abramson M., 2001. Executing
Reactive, Model-based Programs through Graph-based
Temporal Planning. IJCAI '01. AAAI, Menlo Park, CA.

Levinson, R. 1995. A General Programming Language for
Unified Planning and Control. Artificial Intelligence, Vol.
76. See http://www.brainaid.com/papers/propel_aij95.pdf.

Levinson R. 2005. Unified Planning and Execution for
Autonomous Software Repair (10-pg version of this paper)
http://www.brainaid.com/papers/propel_ijcai05.pdf.

Muscettola, N., Dorais, G., Fry, C., Levinson, R., Plaunt,
C. 2000. A Unified Approach to Model-Based Planning
and Execution. Proc. of IAS ‘2000. Venice, Italy.

