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Abstract 

We present recent work to add sensors and activity 
recognition to a commercially available cognitive 
aid, enabling context-aware activity monitoring, 
planning and cueing. The Conversational Assistant 
for Rehabilitation (CARE) system is a context-
aware autonomous agent that interacts with users 
via spoken conversation, similar to user interaction 
with a human caregiver. It includes activity models 
for both the user and the virtual caregiver. CARE’s 
primary activity is talking with the user about their 
plan, performance and situation. CARE cannot di-
rectly execute user activities like bathing or eating, 
which are viewed as exogenous events by CARE.   

We begin with an overview of current executive 
function support provided by PEAT, the advanced 
cognitive aid that we are extending. We then dis-
cuss how we are extending PEAT with activity 
monitoring via sensors and activity recognition, a 
speech interface, and autonomous agent architec-
ture with unified planning and execution.  

1 Introduction 
Conversation between a patient and their human caregiver is 
important for building the patient’s trust and acceptance of 
the helper. This may also be true for electronic cognitive 
assistants. Human caregivers also function independently 
from the patient. Electronic cognitive aids simply echo the 
user’s schedule back, but human caregivers think indepen-
dently about when and what to say.  

We propose a conversational caregiver’s assistant in a 
mobile phone to help veterans with cognitive impairment. 
Patients speak with the CARE agent as if they were speak-
ing with a caregiver on a phone. The CARE agent and pa-
tient use dialogue to resolve questions and learn preferences, 
building the user’s trust and acceptance of device. We are 
extending a commercial cognitive aid already being used by 
the VA, by adding physiological sensors and a conversa-
tional interface.  

The CARE agent provides context-aware conversational 
interventions, talking with users during Activities of Daily 
Living (ADLs), PTSD homework and in-vivo exposure ses-
sions, and collecting experience sampling and biosensor 
data for therapists to determine if patient should move to the  

 
next level of the exposure hierarchy. Anticipated benefits 
include increased user independence and reduced long-term 
caregiver costs. Our Medical Advisory Board includes VA 
neuropsychologists who will provide guidance about clini-
cal and commercial considerations. 

1.1 Needs of veterans with cognitive disorders  
Executive Functions 
Traumatic Brain Injury (TBI) and Post-Traumatic Stress 
Disorder (PTSD) often impair a person’s ability to plan and 
carry out activities, and to adjust plans for changing situa-
tions, which are called executive functions. Many returning 
veterans with these impairments require cognitive assistance 
to maintain or regain independence and quality of life.  A 
primary goal of this work is to address the need to support 
impaired Executive Function, including: 
• Impaired capacity for activity monitoring, planning and 

execution 
• Inflexible activity management - difficulty adjusting 

plans in response to changing goals and situations, in-
cluding error recovery 

 
Skilled Therapy Support In Home Community 
Another need is to provide greater access to skilled cogni-
tive therapy support and methods after veterans leave larger 
VA centers and return home to their community where there 
are fewer cognitive rehabilitation specialists.  Thus a second 
objective is to support therapy in home and community. We 
do this by providing tools for therapists to configure thera-
peutic goals and methods for each client, thus extending the 
reach of skilled clinicians outside of their office.  The sys-
tem runs on a phone and can call for help in an emergency. 
However, the intent is that the system operates autonomous-
ly, only checking in with the therapist for periodic “check 
ups”.  Usage scenarios include guiding users through 
ADLS, cognitive therapy including exposure therapy for 
PTSD, and improving therapy compliance by reminding 
users when and how to follow their therapy plan (e.g., using 
a cane when walking outside).  

1.2 Limitations of Current Assistive Technology 
Existing cognitive aids have several limitations when ad-
dressing the problems described in Section 1.1, which have 
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prevented their widespread acceptance by users and care-
givers. These limitations include:  
 
• No Therapy Agent or Therapy Model: Existing sys-

tems do not allow input of therapy goals or plans or for 
reporting feedback to the therapist.  Current systems 
simply echo the user’s schedule back to them like a 
talking calendar. They do not have the awareness or de-
cision making capability of a human caregiver, who can 
reason independently about the user’s situation and 
consider different intervention options.  

• Unnatural Interfaces: The user interface and data en-
try is complicated for users with cognitive impairment. 
Interaction using computer displays and buttons is un-
natural compared to speaking with a human aid. 

• Limited Awareness: Pre-scheduled activity reminders 
may be out of sync and unresponsive to changing situa-
tions. Current cognitive aids are only aware of these 
changes when the user remembers to update the aid. 

• Inability to Learn: Existing systems have difficulty 
learning user preferences over time through observation 
and discussion, the way that human caregivers do.  

1.3 Proposed Solution: The Conversational Assis-
tant for Rehabilitation (CARE)  

We propose to address the limitations given in Section 1.2 
by extending PEAT to act as a “virtual caregiver.” Figure 5 
shows this system, called the Conversational Assistant for 
REhabilitation (CARE). Unlike the current PEAT system, 
CARE is an independent agent from the user. It is an auto-
nomous “virtual caregiver” that monitors the user’s behavior 
and deliberates about when and what to say to users, inter-
vening only when necessary. CARE’s key features include: 
• CARE Agent: An autonomous agent with a sense-plan-

act cycle, based on methods used for NASA’s auto-
nomous robots [Levinson 1995b; Levinson 2005, Mus-
cettola et al, 2002; Muscettola et al., 2000; Verma et al, 
2005].  

• Therapy Support: Allow caregivers to specify therapy 
goals and plans, and provide feedback to caregivers 
about user performance and therapy compliance. 

• Conversational Interface: Enables human-like interac-
tion. Designed to be similar to speaking with a human 
caregiver on the phone.  The CARE agent and patient 
use dialogue to resolve questions and learn user prefe-
rences, building the user’s trust in the system and lead-
ing to increased user acceptance of device. The care-
giver uses dialog to resolve questions and learn user 
preferences. 

• Context Awareness through Sensing: We will use sen-
sors to try to understand the user’s current context, 
building on our prior research [Modayil, et. al 2008a; 
Modayil 2008b]. 

• Machine Learning: We will implement machine-
learning algorithms that search for patterns in the con-

textual information (e.g. location, schedule, detected ac-
tivity) collected by the sensors, again building on our 
prior work [Liao et al., 2007; Liao et al., 2004]. 

2 Overview of the PEAT cognitive aid 
This section presents an overview of PEAT, the Plan-
ning and Execution Assistant and Trainer, which is be-
ing extended for this project.   PEAT is a NASA Spi-
noff technology based on autonomous planning and 
control software developed to provide executive func-
tions for robotic systems [Levinson 1994; Levinson 
1997; Levinson1995a; 1995b]. Like humans, autonom-
ous robots must balance planning and reactivity in order 
to achieve goals in uncertain and changing situations.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

PEAT’s patented software provides executive 
function assistance for users with cognitive impairment 
[Levinson 2006; Levinson 2002; Levinson 2000]. The 
software  runs on Windows Mobile PDAs and smart 
phones.  PEAT provides closed-loop activity manage-
ment help by cueing users through daily activities, 
monitoring their progress, and replanning in response to 
changing goals and situations [Levinson 1997].  

Figure 1 shows PEAT running on a mobile 
phone. The system is customized for each user by hid-
ing buttons and access to parts of the system that might 
confuse them, and also by using personalized activity 
models, voice recordings, and pictures. PEAT is the 
only commercial product that provides compensatory 
support to help with planning activities, monitoring 
their execution progress, and replanning when changes 
occur.  PEAT is the only system to “close the loop” 
with integrated monitoring, planning and cueing, to 
compensate for important executive functions including 
planning, choice making, sequencing, error detection 
and error correction. 

PEAT includes several features designed to assist us-
ers with executive function impairment, including ex-
pressive action representations, automatic planning for 
flexible scheduling, and a wide range of cueing options.  

Figure 1:  PEAT’s cue card shows the current activity 
and  asks users to confirm  when starting and stopping 
activities. PEAT’s planner adjusts the schedule based 
on user self-report of progress. 
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CUE Card: A key feature of PEAT is the unique 
Cue Card (Figures 1 and 2). The cue card is designed to 
help users with initiation (starting tasks), focus (staying 
on task), and perseveration (stopping or switching 
tasks). PEAT’s cue card shows how much time until the next 
task (left) and how much time remains for the current task 
(right), along with relevant pictures and linked notes. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Cue Card includes the following unique features: 
• Information only about the current activity to avoid 

distractions. 
• Highly impaired uses may be restricted so they have 

access only to the Cue card. The caregiver may set up 
the schedule for days or weeks in advance but the user 
my only see the current cue. 

• Intrusive and Persistent Cues. System turns power on, 
and automatically jumps to Cue Card when its time to 
cue the user to help with initiation. The system keeps 
cueing until the user responds.  The level of intrusive-
ness is customized for each task and each user.  

• Cues include customized pictures and voice recordings   
• Stop cues remind users who perseverate (get stuck in 

repetitive behavior) to move on to another task.  
• Cue overrides allow users to delay the cue (like 

“snooze” button), to start tasks early or late, and to skip 
or reschedule them.  The schedule is automatically ad-
justed as necessary. These overrides are optional and 
customized for each user.  

 
PEAT supports a variety of real-world activity representa-
tions, in addition to the standard “appointment” which starts 
at a specific time.  

Floating Tasks may start anywhere within time window. 
Figure 3a shows that Lunch is a 40-minute task that may 
occur between 12:30pm and 2:30pm with priority 3. It may 
be delayed within that time window by higher priority tasks. 
If the duration fills the time window, then the task is a Fixed 
Task (e.g., appointment) with a start time that cannot slip. 
All task are put in scheduled in priority order (highest 
priority tasks are scheduled first), and are rescheduled as 
necessary based on cue responses and calendar changes. 

 
 
 
Choice Tasks prompt the user to select from context-

dependent task choices. Figure 3b shows a prompt for din-
ner choices.   

Scripts are hierarchical task sequences. Figure 3c shows 
the generic morning routine with four steps. The “S” in front 
of the second step indicates that Bathroom is also a script (a 
“sub-script”).  Figure 3d shows a scheduled Morning Rou-
tine that has been adjusted to accommodate phone call at 
9:30. The phone call was inserted into the Bathroom sub-
script, between Shower and Shave. Script steps may include 
appointments with fixed start times, floating tasks, and 
choice tasks. Choices may also include scripts, so a dinner 
choice to may include a script for roasting a chicken.    

Figure 3: PEAT activity types include floating tasks, 
scripts and choices. The Planner reasons about task 
deadlines, durations, and sequence constraints. 

Figure 2:  PEAT’s cue card shows how much time 
until the next task (left) and how much time remains 
for the current task (right), along with relevant pictures 
and linked notes.  

(a) Floating Tasks               (b) Choice Tasks                

(d) Morning Script adjusted    
      to fit phone call at 9:30 
 

 (c) Scripts  
      (Task Sequences) 

Figure 4:  Delay at the bank example of replanning. 
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Example: Figure 4 shows an example of how a delay at 
the bank may cause replanning. On the left, the Bank task is 
scheduled until 1:20 and Shopping (a floating task) is before 
Movie (a Fixed task with a start time of 2pm). On the right, 
leaving Bank at 1:30 instead of 1:20 causes Shopping to be 
delayed until after Movie, cancelling the low-priority Exer-
cise task. 

3 CARE Agent  
PEAT provides more executive function support than other 
commercially available solutions, but is limited by the lack 
of real-time activity monitoring. It can automatically adjust 
the schedule for delays and changing situations but relies on 
the user to self-report those delays or changes.  

The Conversational Assistant for REhabilitation (CARE) 
system functions as an autonomous agent in a mobile phone 
with integrated sensing, planning and execution (Figure 5). 

The agent takes as input a set of domain models which 
describe both the user and the virtual caregiver behavior. 
This includes procedural activity models for user scripts 
such as physical therapy procedures or roasting a chicken. It 
also includes procedural activity models for the CARE 
agent such as talking with the user about scheduling an ac-
tivity or their user interface preferences.  These procedures 
include choice points which identify alternative methods 
(subroutines) and resources (parameter values), defining a 
search space of procedure variations. The agent interacts 
with the user through the phone interface and it receives 
data from external sensors to identify the user’s location, 
objects they touch, and their pulse and respiration.  

The CARE agent functions as a caregiver that is indepen-
dent from the user. Rather than echoing the user’s schedule 
like a talking calendar, CARE reasons independently about 
therapeutic plans and goals such as when and what to say to 
the user in order to increase independence and improve 
therapy outcomes, and learn user preferences. CARE can 
help plan the user’s activities like dinner but cannot actually 
execute them. CARE’s primary action is talking with the 
user to ask about their plans and preferences.  

The CARE agent’s behavior is defined by its goals and 
actions. CARE Goals include: Increasing user indepen-
dence, responding to user commands and queries, helping 
user complete their goals and activities, Learning user prefe-
rences. CARE Actions include:  

• Planning the user’s activities and adjusting the 
schedule to delays and calendar change, managing 
schedule conflicts. 

• Conversation (integrated speech input and output). 
• Activity Prompts 
• Asking the user about their in-situ experience and 

preferences.  

3.1 Conversational Interface 
We have developed an initial prototype for a speech-based 
interface to PEAT. This includes Automatic Speech Recog-
nition (ASR) and an optional lip-syncing Avatar.  The sys-
tem supports Mixed Initiative Conversation:  

• User initiates commands like adding tasks or making a 
phone call. 

• Computer initiates conversations to cue the user, re-
mind them about therapy compliance, and/or query how 
they feel or what they are doing. 

 
We believe a conversational interface enables a more natu-
ral and flexible interaction between patient and caregiver. 
Additionally, PTSD treatment involves explicitly discussing 
the patient’s beliefs in attempts to replace negative beliefs 
with positive alternatives.   

3.2 Activity Monitoring 

Sensing: Sensors are used to monitor the user’s location, 
the objects they touch and their physiological state  The 
agent receives sensor data through the phone’s wireless sen-
sors which include Bluetooth, WiFi, GPS and phone servic-
es. The sensors enable condition-based cues compared to 

CARE Agent                                     
• Wireless and Desktop connections 
• Conversational Interface 
• Autonomous Agent (Sense-Plan-Act) 

• Monitoring – State Estimation  
and Activity Recognition  

• Planning - User and CARE Activities  
• Execution - CARE Activities only

Sensors User 

Domain Models 
• User and CARE activity models 

• Therapy and ADL procedures  
with choice points.  

• Preferences and Beliefs 
• State Estimator (recognition model) 

Figure 5:  The Conversational Assistant for Rehabilitation 
(CARE). A caregiver’s assistant in a mobile phone. 

Mobile Phone 

Figure 6:  RFID Bracelet detects RFID tag on box
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time-based cue which may be out of sync with changing 
conditions.  CARE monitors the following state conditions: 

Location: CARE monitors the user’s location using GPS 
outdoor and other methods indoor. Figure 7 shows a pres-
sure mat on the floor which detects when user steps on it. 

Objects: CARE detects when a user touches objects 
tagged with Radio Frequency ID (RFID). Figures 6 and 7 
show a  user wearing an RFID reader bracelet which detects 
RFID tags on objects within about 5 inches. This allows 
CARE to detect when user touches objects which have 
RFID tags on them.  

Biosensors:  Wearable sensors relay heart and respiration 
rate, skin temp and movement via Bluetooth to CARE. This 
is used to monitor the user’s physiological state during 
PTSD exposure therapy. 
 
Activity Recognition: Hidden Markov Models (HMM) are 
used to infer activities from the sensors [Modayil, et. al 
2008a; 2008b].   We classify a user’s activities based on 
observation streams from sensors. This activity classifica-
tion can be done with a hidden Markov model (HMM) [Ra-
biner 1989]. In a simple HMM for activity recognition, there 
is one state per activity, and each activity has some proba-
bility of generating the current sensor observations. Formal-
ly, given a set of activities A and a set of observations O, the 
probability of having performed activity at at time t after 
seeing the observation ot only requires knowing the proba-
bility distribution over the activities at the previous time 
step. This is described by the following equation: 
 

 
At each time-step, the best estimate of the current activity is 
updated in the state vector. The estimate is qualitative, either 
indicating that the activity classifier is confident that the 
activity is currently being attempted or indicating that the 
current activity is ambiguous when the classifier is not con-
fident.The classification is ambiguous when the probability 
of the most likely activity falls below a threshold.  

Although an HMM is commonly used with the Viterbi 
algorithm to find the most likely sequence of states to ex-
plain a sequence of observations, the State Estimator needs 
to know what the user is currently attempting. This classifi-
cation must be provided online and in real time for timely 
and effective interventions. Hence, HMM filtering is used 
instead of the Viterbi algorithm. Since the observation and 
activity sequences do not have to be stored, the filtering 
algorithm requires only a constant amount of memory. 

Previous research [Philipose et al, 2004] on recognizing 
activities of daily living with RFID has shown that isolated 
activities can be recognized with a hidden Markov model 
with a limited number of states.  Difficulties can arise when 
a user is multitasking between multiple activities in natural 
environments. Patterson and colleagues [Patterson et al, 
2005] collected data from a variety of morning activities 

using RFID tags and readers. They compared multiple activ-
ity recognizers and found that an HMM with one state per 
activity performed well, but increasing model complexity 
did not improve the recognition performance.  

We have developed the Interleaved HMM (IHMM) 
[Modayil et al., 2008a] as a better variant of an HMM for 
the classification of interleaved activities. The IHMM aug-
ments the state representation in a simple HMM (one state 
per activity) with a richer HMM state representation that 
stores the last observation seen in each activity (one state for 
each observation symbol for each activity). When activities 
are interleaved, the IHMM can better predict the next obser-
vation based on the last observation for the new activity. 
The IHMM has a very large state space, but an effective 
approximation reduces the portion of the state space consi-
dered at each time step to be comparable to that used for the 
simpler HMM. The introduction of explicit representations 
for the interleaving of activities improves the accuracy for 
both the Viterbi algorithm and the filtering algorithms.  

Closely related work to the Interleaved HMM (IHMM) is 
presented by Duong and colleagues [Doung et al 2005]. 
They recognize several activities of daily living using a hie-
rarchical hidden semi-Markov model. Their algorithm can 
perform accurate recognition for some ADLs using observa-
tions from cameras that track a user’s location. 

3.3 Context-aware planning and cueing 
Appropriate Cues – The new monitoring system enables 
condition-based cues that are more in sync with user situa-
tion than time-based cues. When monitor detects user starts 
tasks ahead of schedule (without prompting). Figure 8 
shows how tasks are adjusted when the user picks up the 

Figure 7:  Pressure mat on floor and RFID reader 
bracelet send wireless data to mobile phone indicating 
the user is standing in front of the refrigerator and 
touching the door handle  
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cereal a half-hour ahead of schedule. The planner adjusts the 
schedule to the change, inhibiting inappropriate cues at the 
originally scheduled time. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Contingent Cues – Contingent Cues are not pre-scheduled 
but are triggered by monitored conditions.  We’ve extended 
PEAT activities to specify monitored conditions that must 
be true when task starts (preconditons) or ends (success 
conditions).  This enables contingent cues which remind the 
user when preconditions are not satisfied. For example, the 
task GetMail requires users to touch their cane as a precon-
dition for getting the mail. Figure 9 shows the contingent 
cue that is generated if the system detects the user stepping 
outside without the cane.  
 Autonomous Agent Architecture: Our initial proto-
type for the CARE system uses the PEAT planning and cue-
ing system. However, as we develop more of the CARE 
agent model and behavior, and real-time monitoring, we 
have more need for an full-fledged autonomous agent archi-
tecture with a sense, plan, act cycle.   
 Our CARE agent’s autonomous system model is based 
on two systems developed at NASA Ames Research Center 
for autonomous robots. The PROPEL system shown in Fig-
ure 10 [Levinson 1995b; 2005] and IDEA [Muscettola et. al  
2002; 2000]  both provide methods for unified planning and 
execution in autonomous systems.  The system also incor-
porates contingent execution methods based on the PLEXIL 
system, also developed at NASA [Verma et al., 2005]. 
 The agent’s unified planning and execution provides 
critical self-management and executive functions for the 

CARE agent itself, which is different from the need to com-
pensate for the user’s impaired executive functions. Like the 
user and a human caregiver, the CARE agent must have 
flexible planning and reactivity in order to maintain its own 
autonomy in changing situations.  PROPEL and IDEA pro-
vide the starting point for that technological infrastructure.  
 Unified Planning and Execution – Most autonomous 
systems with integrated planning and execution components 
use different action representations for planning and execu-
tion. Usually, a formal, declarative, logic-based activity 
model is used for the planner but a procedural program-
ming-language (like C or Java) is used for the execution 
model, as with the 3T system [Bonasso et al., 1997].   
 In contrast with this hybrid approach, Levinson pro-
poses that tight integration between planning and execution 
requires unification of the planning and execution compo-
nents, including unification of their activity models as 
shown in Figure 10 [Levinson, 1995b, Levinson 2005].   A 
key motivation for unifying the activity models used by 
planning and execution is to eliminate planner blind spots, 
so the planner can “see into” and reason about details of the 
execution system’s model and state, and vice versa. With 
different action representations for planning and execution, 
the planner has only an abstract model of execution failure, 
which limits its ability to plan error recoveries. Other bene-
fits of unified models include avoiding redundant model 
development efforts, and reducing the problem of keeping 
the two models consistent with each other.  
 To address these issues of unified planning and execu-
tion, Levinson developed the Procedure Planning and Ex-
ecution Language (PROPEL) [Levinson 1995b; 2005], and 
co-developed the IDEA system [Muscettola et al. 2002, 
Muscettola et al. 2000].  IDEA is similar to Propel because 
they both use the same action representation for both plan-
ning and execution. However, IDEA uses a declarative re-
presentation for both function, while Propel uses a proce-
dural representation for both functions. These autonomous 
agent methods have never fully been integrated into PEAT, 
but the addition of sensors and monitoring, has led to us 
incorporating more Propel and IDEA methods.  As we flesh 
out the CARE agent model and integrate real-time activity 
monitoring, there is more need for an autonomous agent 
with its own executive functions.   

PROPEL: Figure 10 shows PROPEL’s unified Planning 
and Execution architecture for autonomous agents. The 
Agent is defined by a model which specifies its goals and 
behavior. For this application, the CARE Agent’s goals in-
clude increasing user independence and therapy compliance.  
The CARE Agent’s behavior is specified by a library of 
therapy and conversation procedures. PROPEL’s procedural 
representation is particularly appropriate for the CARE ap-
plication because conversation is inherently procedural, with 
loops and conditionals and state variables.  CARE agent 
effectors include the phone’s audio speakers and the graphi-
cal display.   

Figure 8: Make Cereal is originally scheduled after Make Tea 
at 8:05, but the monitor detects user starts activity at 7:30 
(shown in Figure 6), then adjust schedule as needed (above). 

Figure 9: CARE detects that user steps outside without 
the cane and generates a contingent cue.   
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 Procedure Library (Activity Model): The Agent 
behaviors are defined by the Procedure library, and are con-
sumed by the Planner and controller modules.  A single 
Procedure Library (activity model) is shared by both the 
planning and execution components. Using the same proce-
dure library for planning and execution enables the planner 
and controller to reason about procedural state of each other.  
 The Action Representation is procedural, with loops, 
conditionals, variables, and subroutines.  Procedures also 
include choice points which specify options for choosing 
different subroutines and parameter values (Figure 11). 
Choice points identify steps in the procedure where different 
methods and resources may be selected.  Choice points are 
nondeterministic subroutine calls or assignment statements 
which define a search space of procedure variations.   

 Procedures for the CARE application include cueing 
and conversations. For example, consider the CueUser task 
shown in Figure 11. This shows pseudocode for a proposed 
example rather than our existing implementation.  However, 
implementation is well defined by prior Propel systems [Le-
vinson 1995b; Levinson 2005]  
 The CueUser procedure (Figure 11) illustrates the use 
of choice points in the action representation. Choice points 
are shown in Bold text. The CARE agent may choose the 
maximum number of cue repetitions by choosing an integer 
between 1 and 10 (maxCues, line 2). The agent also chooses 
the cue message content (content, line 5), the mode (line 6) 
is the presentation modality (audio, visual, verbal, graphi-
cal), and the amount of time to wait before reprompting the 
user (timeout, line 7). This simple procedure with choice 
points produces a rich search space of cue variations 
 Search heuristics H1, H2, H3 and H4 are domain-
specific “LessThanOrEqual” predicates used for sorting 
choices. A choice is “lessThan” the other if it is “better” 
than the other in a given domain context.  Sorting criteria 

include user preferences, planner advice, and execution re-
sults. The heuristics are designed to maximize achievement 
of the CARE agent goals which may be customized for each 
user. The heuristics may include planner advice about 
choices which may maximize goal achievement 

Unified Planning and Control: The Planner and Con-
troller both interpret the procedures from the library. The 
Planner explores a search space of procedure variations de-
fined by the choice points and uses backtracking, while the 
Controller selects a single trajectory through the choice 
space in real-time without backtracking.  The Planner and 
Controller both use “Choice point advice” heuristics to 
make choice point selections. Choice Point Heuristics in-
clude advice rules.  The planner and controller exchange 
choice point advice rules which identify the choices each 
has taken and results of those choices (search success or 
failure/backtracking).  

Planner searches procedure variations to maximize 
goal achievement.  The planner takes procedures as input, 
monitor state updates, and choice point advice which is ex-
changed with the controller. The Supervisor sends start and 
stop messages to control the planner.  

Backtracking in the planner space may be caused by hard 
domain constraint violations such as planning to visit a store 
after hours or trying to make a sandwich without bread. Soft 
constraints include preferring lunch before noon, and in-
volves searching for the “best” scoring path as determined 
by a heuristic function as with A*.  For CARE, the “best” 
choices are those that maximize user independence, therapy 
compliance, and quality of life.  Simulation stubs” are used 
to simulate effector actions during planning so that the agent 
doesn’t talk to itself out loud while planning conversations.   

The Controller executes procedures in real-time. The 
controller takes as input procedures, monitor state updates, 
and choice point advice which is exchanged with the plan-
ner. The Supervisor sends start and stop messages to the 
controller.   

  1  DefineTask CueUser (event) { 
  2  int maxCues = ChooseInteger(1,10, H1);   
  3   n = 0; done = false;  
  4   While ((not done) and (n  <  maxCues)) { 
  5       content = ChooseCueContent(n, event, H2); 
  6       mode = ChooseCueMode(n, event, H3); 
  7       timeout = ChooseTimeout(n, event, H4); 
  8       GenerateCue(cntent, mode); 
  9       response = GetResponse(timeout);        
10       if (response is not “timeout”) 
11          then done = true; 
12        else  n = n+1; 
13    }// end while 
14  } // end Task 

Figure 11: CueUser is a hypothetical Propel procedure 
for cueing the user with choice points defining a search 
space of cue procedure variations.   Figure 10: Propel’s Autonomous Agent Architecture with 

unified Planning and Execution [Levinson 1995b; 2005] 

Supervisor (“CEO”) 
• Agent Goals 
• Coordinates Planning and Execution 

Planner 
(procedure 
search) 

Controller 
(procedure 
execution)

 Procedure Library 
• Agent Behavior 
• Choice points   
• Heuristics 

Choice Pt. Advice 

Effectors 

Monitor 



 

8 
 

The Controller does not require planner input because 
choices are made heuristically.   During execution, heuris-
tics are used to make real time selections at choice points. A 
default choice is made without deliberation if no planner 
choice is available. However, heuristic choices may be im-
proved after the planner has evaluated the execution sys-
tem’s default choices in current context.   

Execution Failures may be caused by hard failures like 
missing the bus or by soft constraints such generating inap-
propriate cues and therapy options which are out of sync 
with the user’s current situation and annoy the user. 

The Supervisor acts as Chief Executive Officer (CEO) 
for the whole system by coordinating the Planner and Con-
troller. The Supervisor sends start and stop messages to the 
Planner and Controller, and it receives Success and Failure 
messages from the Planner and Controller.  

The Supervisor may implement various “executive” strat-
egies such as planning for 10 minutes before executing the 
procedure, or executing the procedure without any planning 
and then planning only if a failure occurs.  
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