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Abstract

We describe the problem of scheduling position esti-
mation updates for ad-hoc Lunar spacecraft constella-
tions. Spacecraft communicate via directional anten-
nas that must be simultaneously oriented towards each
other in order to communicate. Each spacecraft only
has two antennas, limiting communications and there-
fore localization performance. This problem poses chal-
lenges for existing approaches to multi-agent systems,
since communications are neither pervasive nor free. In
particular, spacecraft need to negotiate their ‘partners’
to perform position updates and localization, but must
do so in the presence of these communications limita-
tions. We show how a combination of a-priori shared
knowledge and distributed coordination addresses this
problem. We describe two approaches to this prob-
lem, one based on a greedy algorithm, and the other
based on a matching algorithm. We present empirical
results comparing the matching algorithm to a base-
line in which communication is free and pervasive, and
show the matching algorithm obtains acceptable local-
ization performance.

Introduction
Existing approaches for multi-agent autonomous sys-
tems often assume the existence of pervasive, pre-
dictable, reliable, and free communications. These
assumptions are the basis of the state of the art in
many existing approaches to distributed planning and
plan execution. If the environment is uncertain, agents
can take advantage of the assumption of pervasive or
predictable communications to exchange information
about what they have learned and what they plan to do
next. In this paper, we describe a problem that violates
several of these assumptions, that of providing Lunar
Position, Navigation and Timing (LPNT) services.

Upcoming decades will see a substantial increase in
Lunar missions supporting and inspired by NASA’s
Artemis Program, including low-cost missions trans-
ported through NASA’s Commercial Lunar Payload
Services (CLPS) program. While Lunar missions need
Position, Navigation and Timing (PNT) capabilities to
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ensure safe operations and meet their science objec-
tives, the Moon does not currently have a dedicated
system akin to Earth’s GPS to provide localization ser-
vices. The state of the art designs for Lunar position-
ing technology primarily utilize weak signal Global Po-
sitioning System (GPS) (Stadter et al. 2008) or high
earth orbit (HEO) GPS (Ashman et al. 2018). Simu-
lation of these techniques has shown positioning errors
of 100 m (3σ)(Tian et al. 2014; Capuano et al. 2015;
Wang 2014) which will not meet many mission localiza-
tion requirements. Deep Space Network (DSN) based
localization is available when missions are in view of the
Earth, but low-cost surface missions may not be able to
support the large power, mass, and weight requirements
that these navigation solutions would entail. Addition-
ally, DSN is heavily oversubscribed.

One alternative to provide Lunar PNT service is to
create a dedicated Lunar PNT constellation, similar to
GPS on Earth. However, it is not clear that there will
be enough Lunar users to support the cost and resources
this would require. Another alternative is to capitalize
on upcoming orbital small-sat Lunar science and explo-
ration orbiters to provide PNT services to these low-
cost, surface asset Lunar missions. Examples of such
small-sat science missions include Lunar Flashlight(Co-
hen et al. 2015), Lunar IceCube (Clark et al. 2016)
and Luna H-Map (Kerner et al. 2016). Other NASA
missions have begun to investigate the necessary tech-
nologies for a LPNT network, such as NASAs LunaNet
(Israel et al. 2020). Creating a constellation where the
PNT antenna payloads are always on (such as for Lu-
naNet) may be too resource-intensive for the host space-
craft. Instead, these upcoming small-sat Lunar assets
can be used to create an ad-hoc, non-dedicated PNT
network capable of providing PNT services on-demand.
This approach minimizes the resource usage of anten-
nas while still providing high-quality PNT services to
these low-cost, surface asset Lunar missions.

In order to minimize operating costs, this constella-
tion should be as autonomous as possible, i.e. local-
ization and PNT service provision should be done with
as little interaction with Earth-based mission control as
possible. Implementing even a partially de-centralized
LPNT system requires solving a difficult multi-agent
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systems problem. Communication between satellites is
not necessarily pervasive; the orbits of the scientific mis-
sions permit some pairs of spacecraft to communicate
directly either periodically, or not at all. Information
exchange, therefore, must rely on establishing relays.
Spacecraft whose primary mission is science will per-
form other tasks, or have constraints on how often they
can perform LPNT-related duties. Orbital uncertain-
ties lead to uncertainty in the ability to communicate
at any specific time. Finally, limited time and resources
require satellites to schedule communication activities
to provide the best possible quality of PNT service; how
to do so in a de-centralized manner, given all of the
above assumptions, is a difficult challenge.

The paper is organized as follows. We first formally
describe the problem of LPNT localization using ad-
hoc constellations of spacecraft with limited resource
availability. We describe a hypothetical design of Lu-
nar scientific spacecraft forming these future constella-
tions with low-energy directional antennas, and a hy-
pothetical ad-hoc constellation. We describe the Dis-
tributed Extended Kalman Filter (DEKF) approach to
state estimation, and constraints on future Lunar scien-
tific spacecraft that lead to the need to schedule DEKF
updates. Next, we describe a simple algorithm to re-
duce the resources needed to perform the position up-
date step. While insufficient in its own right, this simple
algorithm sets the stage for a more practical algorithm.
We then describe an approach based on matching that
satisfies the constraints our spacecraft’s communication
system imposes on communications. Both approaches
require steps to distribute information throughout the
constellation; we describe how this broadcast network
topology can be computed on the ground and uplinked
to the constellation periodically in order to drive the
matching algorithm, which is performed completely on-
board. We evaluate the matching approach and demon-
strate that localization is acceptable when compared to
the unconstrained position estimation approach. Fi-
nally, we conclude and describe future work.

Lunar Position Navigation and Timing:
Challenges for Multi-Agent Systems

The Kalman Filter (KF) updates state information in
the presence of uncertainty. The KF uses matrices
representing estimates of satellite position and veloc-
ity, how sensor measurements reduce uncertainty in the
state, how measurements correlate with each other, and
linear models to simplify complex system dynamics to
matrix manipulations. Kalman filters are ideal for sys-
tems which are continuously changing and have noisy
sensors. They have the advantage that they are light
on memory and they are very fast, making them well
suited for real time problems and embedded systems.

The previously presented Lunar Autonomous PNT
System (LAPS) (Hagenau et al. 2021) demonstrated
the feasibility of orbital asset localization among ad-
hoc Lunar small-sat constellations using a Decentral-

ized Extended Kalman filter (DEKF), described in the
following section. The DEKF uses pseudoranges1 to,
and relative velocities between, visible satellites as sen-
sor values, or measurements. LAPS’ initial feasibility
demonstration assumed orbital and ground assets were
continuously updating their position estimates using all
available sources of information. This assumption will
not hold in practice. In general, ad-hoc LPNT service
cannot be provided at the expense of the nominal sci-
ence missions. The DEKF update steps require mea-
surements, which in turn require in-space links (ISLs)
using the radios to perform two-way ranging opera-
tions with each other. Each such operation requires
two spacecraft to communicate simultaneously. Con-
tinual updates require frequent communication between
members of the constellation, which in turn, may not be
feasible or allowed by the science missions. Providing
service must use as few resource as possible, and may
be precluded by high priority science or direct to earth
transmission.

The spacecraft antenna design profoundly influences
the acquisition of measurements for the DEKF update
step. Omni-directional antennas are able to broadcast
to all spacecraft in range; however, such antennas are
power-intensive, and may not be available in the small,
low-cost spacecraft comprising the ad-hoc networks.
Lower-energy directional antennas are more likely on
low-cost scientific space missions. However, directional
antennas constrain both communications and two-way
ranging operations, both due to antenna pointing and
antenna slew and signal acquisition times. Further-
more, in a distributed multi-agent system, both satel-
lites must schedule their actions to take place at the
same time, otherwise the actions will not succeed.

Figure 1: High-Altitude, 21 satellite ‘Frozen Or-
bit’ Constellation. The Frozen orbit constellation
provides 24/7 global coverage but is an orbit that has
never been flown at the Moon.

We evaluate our approach on a hypothetical Frozen2

orbit constellation, which consists of 21 satellites at an
altitude of 5500 km evenly spaced around 3 circular, 40◦

1Approximation of the true range.
2Low or no propellant needed.
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inclination orbital planes, as seen in Figure 1. Assuming
all assets are always available, this constellation is de-
signed to represent a constellation that provides global,
continuous PNT coverage to all locations on the Lunar
surface including the low-latitude polar regions (Pereira
and Selva 2020). While frozen orbits have never been
demonstrated at the Moon, this constellation provides
a good test case for our approach.

The LPNT Distributed Extended
Kalman Filter

We begin with describing the KF update from the per-
spective of a single spacecraft. Let x represent a single
satellite’s estimated state, and P the state covariance
representing the uncertainty of the satellite’s position
and velocity after propagating its orbit. Φ and Q cap-
ture the state transition model, updating the state co-
variance. H is the measurement sensitivity matrix; it
describes how the measurements (pseudoranges and ve-
locities) inform the receiving satellites’ estimate of its
position and velocity. R, the measurement covariance,
describes how likely combinations of measurements are.
The Kalman Gain K is a function of P,H and R and
represents the bias between between predicted state and
the measurement. Each satellite’s state x is a 6 dimen-
sional column vector (3 position and 3 velocities) and P
is the state covariance matrix,Φ is the state transition
matrix and Q is the discrete time process noise covari-
ance matrix as presented in (Hagenau et al. 2021) and
all are 6×6 matrices . If a constellation has n satellites,
then H is a 2(n−1)×6 matrix, R is a 2(n−1)×2(n−1)
matrix, and K is a 6× 2(n− 1) matrix.

In the measurement update step of a KF, H and R
are combined with measurements z, therefore modify-
ing P to reflect reduced uncertainty. Each spacecraft
in the constellation contributes a pseudorange and a
velocity to the measurement; thus, z is an 2(n− 1) di-
mensional column vector. Both H and R depend on
the relative positions of all satellites, and thus must be
updated after the orbits are propagated and globally
shared, prior to incorporating the new measurement
z. KFs come in many different varieties. The origi-
nal DEKF update described in (Hagenau et al. 2021)
is a distributed KF (each satellite performs its own up-
dates) and extended (nonlinear instead of linear) KF.
In this work, as in (Hagenau et al. 2021), we use the
Increased Measurement Covariance DEKF of (Wen et
al. 2019), whose update is of the form:

x−k+1 =

∫ tk+1

tk

ẋ dt (1)

P−k+1 = ΦkPk
+ΦT

k + Q (2)

K = P−HT
(
HP−HT + R + H̄P̄−H̄T

)−1

(3)

P+ = (I −KH)P− (4)

x+ = x− + K(z −Hx−) (5)

Equation 3 for the Kalman gain is derived from Equa-
tion 52 in (Wen et al. 2019). (Hagenau et al. 2021) show
the DEKF is able to localize effectively using all avail-
able measurements and updating every minute; since
then, we have shown effective localization is possible
when updating every 10 minutes.

Optimizing KF sensor updates in the presence of
various constraints and costs has been studied previ-
ously. (Mourikis and Roumeliotis 2006) find the ideal
update frequency for sensors in a multi-robot central-
ized EKF setting. (Chhetri, Morrell, and Papandreou-
Suppappola 2003) solve the problem of selecting the
single best sensor measurement to use in a single-agent
EKF setting. (Chung et al. 2004) solve the problem
of sensor selection, transmission and scheduling in a
multiple sensor setting as a centralized KF. (Ny, Feron,
and Dahleh 2011) consider optimal sensor selection and
scheduling in an infinite-time horizon centralized KF.
Our work is, to our knowledge, the first to be applied
to the DEKF setting, combining inherently distributed
systems, nonlinear EKFs, and measurement selection.

Greedy Scheduler

In the DEKF scheduler algorithms that follow, we will
initially restrict the update step for each satellite i to
use only a single measurement between satellite i and
satellite j. We will use notation Pi instead of P− to
refer to i’s pre-measurement covariance, and Pi←j in-
stead of P+ to refer to i’s post-measurement update
with the measurement from j. Similarly, the Kalman
gain K is denoted Ki←j . Finally, the post-measurement
state is xi←j . We want a DEKF scheduler that chooses
the best two-way ranging operations to perform while
respecting the directional antenna constraints of our
LPNT constellations. As a stepping stone, we start
by describing a locally greedy DEKF scheduler. A well
localized single asset i will have a small state covari-

ance Pi = E
[
(xi − x̄i) (xi − x̄i)T

]
, where the state

xi =

[
ri
vi

]
, x̄i = E [xi] and E = expected value. A

measure of the size of the state covariance (the magni-
tude of uncertainty) is the Frobenius norm of Pi, ‖Pi‖F,
which reduces a 6× 6 positive semi-definite matrix to a
scalar. A well localized constellation of assets will have
small state covariances across all assets. An equivalent
constellation-wide measure is the Euclidean norm of the
sum of the asset Frobenius norms:√√√√ n∑

i=1

‖Pi‖2F (6)

The square of the Euclidean norm of the asset Frobe-
nius norms is equivalent to the Frobenius norm of the
full (decentralized) constellation state covariance ma-
trix, i.e.

3



n∑
i=1

‖Pi‖2F = ‖P‖2F , P =


P1 0 · · · 0
0 P2 · · · 0
...

...
. . .

...
0 0 · · · Pn

 (7)

All measurement sensitivity matrices H have one row
hj for each available measurement j This row contains
the unit vector of the measurement direction. The lo-
cally greedy DEKF scheduler assumes that at each time
step the satellite can only utilize one measurement. The
locally greedy DEKF scheduler chooses, for each satel-
lite i, this one measurement in a way that attempts to
minimize (in a Frobenius norm sense) the covariance of
the satellite’s state estimate. The measurement update
for each satellite i is now:

Ki←j = Pih
T
j

(
hjPih

T
j + rjj + h̄jP̄ih̄

T
j

)−1

(8)

Pi←j = (I −Ki←jhj)Pi (9)

xi←z = xi + Ki←j(zi − hjxi) (10)

Vectors hj and h̄j denote the single row of H and
H̄ (i.e. the single measurement) whose index is j, and
rjj is the (scalar) variance of that measurement. Let
visibility graph G = V,E, with eij ∈ E if satellite i and
j are mutually visible and within radio range. hj and
h̄j are determined using an exhaustive search through
all n rows of measurement matrix H, solving

j = argmink=1...n‖Pi←k‖F (11)

by first computing Pi←k for all k 6= i such that
eij ∈ E using Equations 8 and 9. and then using hj , h̄j
and rj,j in Equations 8 and 9 for the DEKF measure-
ment update step. In selecting the measurement, the
measurement itself (i.e. the pseudorange - velocity pair)
is not used. Only the geometry (direction) of the mea-
surement is required, and this only needs to be known
approximately. Indeed, Equations 8 and 9 only use in-
formation based on the state prior to update.

As noted above, each 2-way ISL provides 2 measure-
ments, pseudorange and velocity. To account for both
measurements from a single ISL, we assume the two
measurements from satellite j appear in consecutive
rows of H and vector z, and interpret Equations 8, 9
and 11 as finding the 2× 6 matrix hj′ and 2× 2 covari-
ance sub-matrix rjj′ , and perform the same minimiza-
tion; we then keep Equations 8, 9 and 11 unchanged
(using only subscript j) for simplicity.

In order to both communicate and perform the
DEKF update, two spacecraft must orient their anten-
nas to point at each other, and simultaneously perform
the two-way ranging operation. Such paired actions
hearken back to required concurrency in temporal plan-
ning (Cushing et al. 2007). Since each satellite com-

putes its own preferred partners, and since each space-
craft needs to orient its antenna at the same time in or-
der to communicate, the spacecraft need to distribute
their preferred partners globally across the constella-
tion prior to the 2-way ISLs, and thus the DEKF up-
date, meaning satellites must ‘communicate in order to
communicate’. We describe how to solve this seeming
chicken and egg problem later in the paper.

The greedy measurement scheduler is optimal if each
spacecraft can only use one measurement in the DEKF
update step. To see why, see that each ‖Pi←j‖2F term
in Equation 6 is minimized by the greedy approach.

The greedy scheduler solution has a significant draw-
back; some satellites may need to perform multiple two-
way ranging operations, one to obtain its ideal measure-
ment, and additional operations to provide the ideal
measurement to another visible spacecraft. To see why,
suppose satellite i has δ(i) neighbors in G. In the
worst case, i is the preferred partner for all of its neigh-
bors, and a communications schedule must be built af-
ter globally distributing the greedily selected preferred
partners. Scheduling the 2-way ISLs and updates can
(almost; see future work) be posed and solved as Edge-
Colorability of the graph Gg, whose edges are the de-
sired greedy matches, where Gg ⊂ G. The edge color-
ing constraint ensures no node has two edges of the
same color incident on it. Each color of this graph
corresponds to a ‘time slot’, meaning all edges of the
same color correspond to 2-way ISLs performed at that
time. Vizing’s theorem shows that the number of colors
needed to edge-color any graph G is either ∆ or ∆ + 1
where ∆ is the maximum degree of G. We know ∆,
the maximum degree of G, bounds above ∆g, the max-
imum degree of Gg. Thus, in the worst case, performing
the greedy update may require multiple communication
acts involving reorientation of the spacecraft antenna
to perform all the needed 2-way ISLs. There may be
insufficient time to perform all necessary antenna re-
orientations (called slews), and even if there were, it is
very time and energy intensive to do so, and may not
be allowed by the science missions.

There are other problems with the greedy scheduler.
It is inefficient to perform multiple 2-way ISLs, only to
discard all but the best. Furthermore, both spacecraft
performing a 2-way ISL can update their covariances;
the greedy criteria does not account for this in measur-
ing the improvement of the state per Equation 6.

A Matching-Based Scheduler
The greedy scheduler algorithm is a useful way of in-
troducing key concepts needed for a practical scheduler,
but is inadequate on its own for the reasons described
above. We now devise an algorithm that ensures each
spacecraft performs only a single 2-way ranging oper-
ation per DEKF update cycle. The key features of
the greedy scheduler we will carry forward to the next
formulation are the use of the Frobenius norm as the
measure of quality of a proposed update, and a global
broadcast in preparation for performing two-way ISLs.
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Our spacecraft have two antennas, so they could per-
form 2 ranging operations, which we will address later.

In order to limit all satellites to only a single two-
way ranging operating per DEKF cycle, and also ac-
count for reductions in both satellites’ covariances dur-
ing the update step, we must find the best set of pairs
of DEKF measurement updates to perform, according
to the definition of the desirable constellation state in
Equation 6. If i and j perform a two-way ISL and up-
date, their contribution to the sum in Equation 6 is
fij ≡ ‖Pi←j‖2F. We desire this contribution to be as
small as possible. The possible two-way ranging op-
erations are constrained by visibility graph G = V,E,
as with the greedy algorithm. If we annotate each edge
eij ∈ E with the sum fij +fji, we have defined the well-
studied Minimum Matching Problem, which is solved by
well-known algorithms. We use a 0 − 1 decision vari-
able yij to indicate i is matched with j due to the ex-
istience of edge eij . In order to account for both odd
numbers of nodes and the possibility of visibility graphs
with nodes of degree 1, self-matches are allowed; we let
fii = ‖Pi‖2F. By definition, the post-measurement up-
date can’t increase the covariance, hence fii ≥ fij for
j 6= i. Thus, in this matching problem, a pair of self-
matches will contribute fii + fjj , but a match of i with
j will contribute some sum fij + fji ≤ fii + fjj , which
by definition is more desirable. The matching problem
is then defined as follows:

min
∑
i 6=j

(fij + fji)yij + fiiyii (12)

s.t.
∑
j

yij = 1 ∀i (13)

The constraints ensure each node is matched to ex-
actly one other node, perhaps itself. If the optimal

value of Equation 12 is f̂ , then the constraint en-
sures there is some j matched with each i and thus√
f̂ =

√∑
ij‖Pi←j‖2F. Thus, the solution to the match-

ing problem minimizes the desired objective (Equation
6) for the constellation.

As with the edge-coloring formulation, all satel-
lites must pose and solve the same matching prob-
lem simultaneously, in order to determine the global,
constellation-wide two-way ranging topology, and sub-
sequently execute the same 2-way ranging operations.
This means all satellites must know the visibility graph
G for the time at which the matches need to hold. The
visibility graphs can be computed on the ground hours
or days in advance and uplinked to the spacecraft. How-
ever, all satellites must also exchange their fij values
globally to build and solve the matching problem. The
fijs cannot be computed and uplinked from the ground,
because the covariances change after each DEKF up-
date. Thus, in a similar manner to the greedy DEKF
scheduler, satellites need to broadcast the fij ’s globally
in order for each satellite to pose and solve the identical
matching problem. Since each satellite independently

determines the same matching solution, they do not
need to communicate the solution.

Each spacecraft has two antenna, so we can generalize
this approach and construct a ‘multi-match’, in which
each spacecraft is matched with two other spacecraft to
perform 2-way ISLs. We generalize the notation, and
let Pi←j,k refer to the post-measurement covariance of i
with measurements j, k. We modify the formulation of
this problem as follows: first, in addition to the single
best ISL, we must also evaluate pairs (j, k) of ISLs:

Ki←j,k = Pih
T
j,k

(
hj,kPih

T
j,k + rjk + h̄j,kP̄ih̄

T
j,k

)−1

(14)

Pi←j,k = (I −Ki←j,khj,k)Pi (15)

fijk ≡ ‖Pi←j,k‖2F (16)

We now pose and solve the ‘2-matching’ as follows:

min
∑
ijk

fijkyijk +
∑
ij

fijyij (17)

s.t.
∑
j,k

yijk +
∑
j

yij = 1 ∀i (18)

∑
k

yijk + yij =
∑
k

yjik + yji ∀i, j (19)

Constraints 18 mimic the single-matching problem;
Constraints 19 are symmetry constraints; if satellite i
is matched to j, this constraint ensures j is matched to
i, but allow both i and j to be matched with a second
satellite k.

Ad-Hoc Broadcast Network
Construction

As noted above, each satellite’s DEKF scheduler needs
all the fij ’s to pose and solve the same matching prob-
lem. This means that in addition to the visibility
graphs, an ad-hoc broadcast network must be centrally
computed (on the ground) and provided to each satel-
lite. A spacecraft with two antennas can communicate
with two of its visible neighbors. If it is possible to con-
struct a Hamiltonian Path GH in the visibility graph G,
once established, information can be communicated to
all satellites via this network without expensive antenna
reorientation operations.

We briefly describe how the complete DEKF update
cycle is performed, using the single-match notation for
simplicity. Visibility graphs G and broadcast networks
GH are assumed to be shared among all satellites i.
The communication times are based on notional future
radio performance; antenna reorientation time is based
on analysis of CubeSats that demonstrates 3

◦
per sec-

ond (on average) body-mounted slew rate (Sin et al.
2021). First, Pi, xi as computed from the last DEKF
update must be globally broadcast over network GH .
We assume this takes 3 minutes; 1 minute to slew, 1
minute to join network, and 1 minute to transmit and
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Broadcast fij over GH  
Node i now has all fij
Compute match GM 

Broadcast Pi ,xi  over GH
Node i now has all Pj ,xj
Compute Hi  ,Ri  from Pj ,xj
Find fij 

Obtain zj  using GM 
DEKF update step
Pi←j ,xi←j  computed

GH :Slew Join Send/
Receive

Send/
Receive

GM :Slew Join

t=0 t=1 t=2 t=3 t=4 t=5 t=6

Pi ,xi  computed 
in prior DEKF cycle

…

t=10

Figure 2: DEKF Update Cycle includes network setup, communication, and computations.

receive. Once this is complete, each satellite has Pj , xj
from all other satellites. Now satellite i can construct
Ri, Hi from Pj , rj , and then find all fij ’s. Next, satel-
lite i sends the fij ’s over the same broadcast network.
This takes 1 minute to transmit and receive. Now each
satellite can pose and solve the matching problem using
the fij ’s (Equation 12). The solution forms the 2-way
ISL network, which we call GM , which takes 2 minutes
to establish; 1 minute to slew and 1 minute to join net-
work. This topology is only needed to generate zj by
commanding the radios, after which the DEKF update
step (Equations 8,9) can be performed. This cycle is
described in Figure 2.

The ad-hoc broadcast network GH must persist long
enough to enable global communication of the fij ’s,
which are needed to formulate the matching problem,
and also to share state needed to update P , H and R
to formulate the fij ’s. These two communication acts
are scheduled to occur one right after the other. Each
P is a 6 × 6 matrix of doubles, and each x is a 6 × 1
vector of doubles, for a total of 2588 bits. If each fij is
a double this is 64 × 97 = 6208 bits. Thus, the band-
width requirements to update the matching exceed that
required to propagate the DEKF. Our analysis of the
notional 10 minute DEKF update cycle indicates broad-
cast networks must hold for 3 minutes to transmit both
of these messages, not including the 1 minute antenna
slew time, but that the expected bandwidth is sufficient
to perform these transmissions.

For the Frozen orbit constellation of 21 satellites, we
solved the general Hamiltonian Path problem to select
an arbitrary GH . We then checked to see if the resulting
GH held at the next time step; if it didn’t, we would
look for another GH . Somewhat surprisingly, a single
GH holds for all G.

Comparing Approaches

We informally compare the locally greedy and matching
formulations using different metrics: optimality, num-
ber of communication acts as proxies for expensive an-
tenna slew time, and computation time.

The locally greedy approach is optimal with respect
to Equation 6 if the DEKF update step constrains a
satellite to use only a single measurement. The sin-
gle matching algorithm is optimal if satellites are con-
strained to perform at most one 2-way ISL, and the
2-matching is optimal if satellites are constrained to
perform at most two 2-way ISLs.

Both approaches broadcast information to set up a
scheduling problem. Network traffic for the greedy algo-
rithm is 1 double per satellite, while that for the match-
ing algorithm is n doubles per satellite. However, the
matching approach requires only one additional com-
munication topology to perform the two-way ranging
operations. The greedy DEKF update requires each
spacecraft i to communicate with at worst all δ(i) of its
neighbors, so the communication topology needs to be
updated at most ∆ times as a result.

The computation costs of both approaches are sim-
ilar. To drive both algorithms, each satellite i needs
to compute ‖Pi←j‖2F for all visible satellites j. Com-
puting ‖Pi←g,h‖F increases this time by a factor of n
worst-case compared to greedy. For the greedy DEKF,
polynomial-time approximations exist to edge color a
graph G with ∆ + 1 colors, and the graphs are likely
simple enough that such algorithms suffice. The visi-
bility graph is not a bipartite graph, meaning that the
matching problem is best solved by the polynomial time
Edmond’s Blossom algorithm, which is a modest com-
putational cost (Edmonds 1965) 3

Empirical Results

Table 1: DEKF Performance Comparisons

Fully-Sampled One-Match Two-Match

79.7m 10521.6m 127.8m

Based on our informal evaluation above, we choose
to empirically evaluate the matching algorithm perfor-
mance. Table 1 compares the DEKF of (Hagenau et al.
2021), which we refer to as ‘fully-sampled’, with the two
matching-based scheduler approaches described above.
The 21 satellite Frozen constellation was simulated for 7
days. A high-fidelity simulation provides ground truth,
and error for each satellite is determined by comparing
its position as determined by the DEKF with ground
truth. The fully-sampled DEKF updates every 10 min-
utes but uses every measurement; the matching ap-
proaches are limited to either one or two ISLs, meeting
the notional 2-antenna spacecraft design constraint.

Table 1 shows median error over all satellites, over
all time. The performance of single matching is quite

3We do not report solver time results in our paper, only
measurement performance. We use an MILP formulation
for both matching algorithms.
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Figure 3: Comparison between matching ISL per-
formance.

poor, but multi-matching leads to only 1.6× increase in
median localization error compared to the unrestricted
DEKF. Figure 3 shows more details; 1−matching sim-
ply is not able to achieve good localization performance,
while two matching is comparable to the unrestricted
DEKF. Figure 4 shows the localization error of all 21
satellites over the 7 day horizon. The fully-sampled
DEKF, and by extension the 2−matching show good
performance. The 1−matching is dominated by the sys-
tems geometry with only a few nodes dominating the
localization.

Conclusions and Future Work
We summarize here some of the features of our ap-
proach. The complete solution to the LPNT prob-
lem still requires a centralized authority to provide
the visibility graph G, and the pre-computed broad-
cast networks GH , to each satellite. Thus, our solu-
tion does not address completely the problem of an un-
predictable, non-pervasive communication foundation.
However, our approach demonstrates the exchange of
dynamically changing information (the fij ’s) over these
broadcast networks to perform the best possible two-
way ranging operations at a fixed cadence. Once in-
formation is exchanged, rescheduling is completely dis-

tributed. The approach ensures all agents indepen-
dently find the same schedule, and thus pairs of agents
can reliably perform 2-way ISLs, demonstrating agents’
ability to coordinate, even when communication is con-
strained. The comparable localization performance of
2−matching shows good localization performance can
be achieved with significantly less communication than
the approach that uses all measurements.

Our approach can be thought of as a classic ‘re-
planning’ approach in the presence of new information.
One might ask if such a problem could be posed and
solved as a DEC-POMDP (Bernstein et al. 2002). Be-
cause enumeration of the state space is possible on the
ground, one could potentially plan for multiple DEKF
cycles, rather than just a single cycle, as we propose.
However, the state space is very large and complex to
enumerate. Many such states are those in which no
communication is possible; detecting and pruning these
can reduce the state space but increases complexity.
Finally, the policy could be very large, and potentially
impractical to uplink, store and execute.

It is important to analyze other constellation designs.
Variations in orbit architecture (number of planes, and
spacing), orbit altitudes, and numbers of assets will
influence visibility, existence of ad-hoc broadcast net-
works, and quality of the matching algorithms. Impos-
ing constraints on the non-dedicated assets (e.g. space-
craft is performing science) also changes the problem.

The 3-uniform hyper-edge coloring problem (Ob-
szarski and Jastrzebski 2017) accounts for the fact that
spacecraft have two antennas when scheduling greedy
algorithm measurements, suggesting an empirical eval-
uation of the greedy approach and comparison to the
2-matching approach.

Generalizing to other multi-agent localization prob-
lems will change the visibility graphs, existence of ad-
hoc broadcast networks, and quality of the matching
algorithms. Moving away from directional links to om-
nidirectional antennas may be feasible for, say, a terres-
trial network of UAVs or robots, and change the flavor
of the problem.

Figure 4: Comparison of the spacecraft localization errors subject to the different forms of the DEKF. The
fully sampled DEKF represents the best case scenario while the single ISL is the minimum functionality. The two ISL
case and the fully sampled DEKF are similar magnitudes with the steady state peaks after July 4th being slightly
larger than the fully sampled. The behavior of the single ISL in b) is dominated by the anchor nodes availability.

7



This work was funded by the NASA Game-Changing
Development Program (GCD).

References

[Ashman et al. 2018] Ashman, B.; Bauer, F. H.;
Parker, J.; and Donaldson, J. 2018. GPS Operations
in High Earth Orbit: Recent Experiences and Future
Opportunities. In Proceedings of the 15th International
Conference on Space Operations.

[Bernstein et al. 2002] Bernstein, D. S.; Givan, R.; Im-
merman, N.; and Zilberstein, S. 2002. The Com-
plexity of Decentralized Control of Markov Decision
Processes. Math. Oper. Res. 27(4):819 – 840.

[Capuano et al. 2015] Capuano, V.; Botteron, C.;
Leclère, J.; Tian, J.; Wang, Y.; and Farine, P.-A. 2015.
Feasibility Study of GNSS as Navigation System to
Reach the Moon. Acta Astronautica 116:186 – 201.

[Chhetri, Morrell, and Papandreou-Suppappola 2003]
Chhetri, A.; Morrell, D.; and Papandreou-
Suppappola, A. 2003. Scheduling Multiple Sensors
Using Particle Filters in Target Tracking. In IEEE
Workshop on Statistical Signal Processing, 2003,
549–552.

[Chung et al. 2004] Chung, T. H.; Gupta, V.; Hassibi,
B.; Burdick, J.; and Murray, R. M. 2004. Scheduling
for Distributed Sensor Networks with Single Sensor
Measurement per Time Step. In Proc. IEEE Confer-
ence on Robotics and Automation, 549–552.

[Clark et al. 2016] Clark, P. E.; Malphrus, B.; Brown,
K.; Hurford, T.; Brambora, C.; MacDowall, R.; Folta,
D.; Tsay, M.; Brandon, C.; and Team, L. I. C. 2016.
Lunar Ice Cube: Searching for Lunar Volatiles with
a Lunar Cubesat Orbiter. In 48th American Astro-
nomical Society Division of Planetary Science Meet-
ing, 223–03.

[Cohen et al. 2015] Cohen, B. A.; Hayne, P. O.; Green-
hagen, B. T.; and Paige, D. A. 2015. Lunar Flashlight:
Exploration and Science at the Moon with a 6U Cube-
Sat. Proceedings of the American Geophysical Union
Fall Meeting 2015.

[Cushing et al. 2007] Cushing, W.; Kambhampati, S.;
Mausam; and Weld, D. 2007. When is Temporal Plan-
ning really Temporal? In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, 1852
– 1859.

[Edmonds 1965] Edmonds, J. 1965. Paths, Trees, and
Flowers. Can. J. Mathematics 17:449 – 467.

[Hagenau et al. 2021] Hagenau, B.; Peters, B.; Burton,
R.; Hashemi, K.; and Cramer, N. 2021. Introducing
the Lunar Autonomous PNT System (LAPS) Simu-
lator. In 2021 IEEE Aerospace Conference (50100),
1–11.

[Israel et al. 2020] Israel, D.; Cooper, L. V.; Mauldin,
K.; and Schauer, K. 2020. LunaNet: A Flexible and
Extensible Lunar Exploration Communications and

Navigation Infrastructure and the Inclusion of Small-
sat Platforms. In 2020 Small Satellite Conference.
Utah State University.

[Kerner et al. 2016] Kerner, H.; Hardgrove, C.; Bell, J.;
Amzler, R.; Babuscia, A.; Beasley, M.; Burnham, Z.;
and Cheung, K.-M. 2016. The Lunar Polar Hydro-
gen Mapper (LunaH-Map) Cubesat Mission. In 2016
Small Satellite Conference. Utah State University.

[Mourikis and Roumeliotis 2006] Mourikis, A., and
Roumeliotis, S. 2006. Optimal Sensor Schedul-
ing for Resource-Constrained Localization of Mobile
Robot Formations. IEEE Transactions on Robotics
22(5):917–931.

[Ny, Feron, and Dahleh 2011] Ny, J. L.; Feron, E.; and
Dahleh, M. A. 2011. Scheduling Continuous-Time
Kalman Filters. IEEE Transactions on Automatic
Control, 56(6):1381 – 1394.

[Obszarski and Jastrzebski 2017] Obszarski, P., and
Jastrzebski, A. 2017. Edge-coloring of 3-uniform hy-
pergraphs. Discrete Applied Mathematics 217:48–52.
Combinatorial Optimization: Theory, Computation,
and Applications.

[Pereira and Selva 2020] Pereira, F., and Selva, D.
2020. Exploring the Design Space of Lunar GNSS in
Frozen Orbit Conditions. In 2020 IEEE/ION Posi-
tion, Location and Navigation Symposium (PLANS),
444–451.

[Sin et al. 2021] Sin, E.; Arcak, M.; Nag, S.; Ravindra,
V.; Li, A.; and Levinson, R. 2021. Attitude Trajectory
Optimization for Agile Satellites in Autonomous Re-
mote Sensing Constellations. In Proc. AIAA SciTech
Forum.

[Stadter et al. 2008] Stadter, P. A.; Duven, D. J.;
Kantsiper, B. L.; Sharer, P. J.; Finnegan, E. J.; and
Weaver, G. L. 2008. A Weak-Signal GPS Architecture
for Lunar Navigation and Communication Systems. In
Proceedings of the IEEE Aerospace Conference, 1 – 11.

[Tian et al. 2014] Tian, J.; Wang, Y.; Wang, W.; Shi,
P.; Capuano, V.; Leclère, J.; Botteron, C.; and Pierre-
André, F. 2014. Cross-Band Aided Acquisition on
HEO Orbit. In Proceedings of the International As-
tronautical Congress.

[Wang 2014] Wang, Z. 2014. Review of Chip-Scale
Atomic Clocks Based on Coherent Population Trap-
ping. Chinese Physics B 23(3):030601.

[Wen et al. 2019] Wen, Y.; Zhu, J.; Gong, Y.; Wang,
Q.; and He, X. 2019. Distributed Orbit Determina-
tion for Global Navigation Satellite System with Inter-
Satellite Link. Sensors 19:1031–1046.

8


