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Abstract

We present new planning methods, results and analysis for
a novel application designed to improve wildfire danger pre-
diction. We developed a centralized, ground-based planner to
generate coordinated observation data collection and down-
link plans for multiple small satellites with limited storage
capacity.
Each observation target is associated with a science value (re-
ward) based on WFPI-based Large Fire Probability (WLFP)
data produced by the U.S. Geological Society. The planner
maximizes the sum of science rewards collected for all ob-
served targets on all satellites. Satellites are coordinated to
avoid duplicate observations of a target by more than one
satellite. The planner seeks to collectively observe as many
targets as possible for the whole set of satellites, without ex-
ceeding storage capacity or dipping below minimum battery
charge on any individual satellite.
The large scale of this problem is a challenge. We present ex-
periments for a scenario with a system of 4 satellites and a 12-
hour plan horizon using real world data. In this scenario, each
satellite has 1800 potential images to collect, but can only
store 60 images at a time, with limited downlink time avail-
able to free up storage. Data storage is modeled in Python
as a First-In-First-Out queue for each satellite, with a queue
capacity of 60.
The search space is generated and constraints are enforced
procedurally, using a novel extension of Python which uses
non-deterministic choice points to define command choices
(decision variables) for each satellite. A binary decision vari-
able is defined for every time point when a satellite can (a)
collect data or not, or (b) downlink data or not. The number
of decision variables explodes as the number of satellites and
plan horizon increase. For our experiment scenario, there are
28,234 binary decision variables, producing a search space
with 228,234 nodes.
We present a novel use of Monte Carlo Tree Search (MCTS),
adapted to be used as the search engine to explore this huge
search space produced by the choice points embedded in
Python code. To speed up performance, we use MCTS Tree
Parallelization where each parallel process constructs a sepa-
rate MCTS tree. We present experiments comparing solver
speed and solution quality under various planner configu-
rations, including: greedy heuristic vs. random simulation
policy, soft vs. hard constraints, pure stochastic simulation
vs. MCTS reinforcement learning, number of MCTS simula-
tions, and number of parallel processes.

1 Science Problem and Application
Wildfires are unplanned fires, which may result from human
activity (campfires, arson, escaped prescribed burn projects),
lightning, volcanic activity, etc. In the United States (U.S.),
from 2013 to 2022, there were an average of 61,410 wild-
fires annually and an average of 7.2 million acres impacted
annually (Congressional Research Service, 2023). The eco-
nomic impact of wildfires depends on their location, size,
duration, and severity and can be extensive. The average an-
nual federal spending in the U.S. on fire suppression totaled
$2.5 billion (in 2020 dollars) between 2016 and 2020 (Con-
gressional Budget Office, 2022).

Remote sensing by satellites has helped in monitoring of
pre/active/post fire conditions. Within the active fire condi-
tion, early wildfire detection, and subsequent monitoring of
progression of the fire front are possible at an global scale
by satellites. For example, Fire Information for Resource
Management System (FIRMS) distributes Near Real-Time
(NRT) active fire data from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) aboard the Aqua and Terra
satellites, and the Visible Infrared Imaging Radiometer Suite
(VIIRS) aboard SNPP and NOAA 20 (NASA, 2023). This
is used to estimate fire-perimeters. In the post fire condition,
post fire damage, and risk of landslides, floods are evalu-
ated from satellite data. An example is the Burned Area
Reflectance Classification (BARC), a satellite-derived data
layer of post-fire vegetation conditions (United States Geo-
logical Survey, n.d.).

The focus of this paper is on the use of multiple space-
craft for monitoring in the pre-fire conditions over the con-
tiguous U.S. The likelihood of a wildfire occurrence can be
evaluated from the pre-fire condition (weather, vegetation,
soil moisture, human activity, etc.) of a location, which can
then help in preparedness of emergency response or activ-
ities geared towards mitigating the risk (such as prescribed
burns). The term “fire danger” is used to quantitatively de-
fine the risk of a wildfire.

The distributed spacecraft mission considered in this work
is the NASA CYGNSS mission (Ruf et al., 2018). It con-
sists of 7 active spacecraft each carrying a GNSS Reflectom-
etry (GNSS-R) instrument. The instrument gathers GNSS
L1 reflected signals of the surface, and geophysical proper-
ties such as soil-moisture are inferred from it. At any given
point in time, L1 signals from GNSS networks such as the
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Figure 1: Concept of operations for satellite-based wildfire
danger remote sensing

GPS, Galileo, GLONASS, Beidou are reflected off the sur-
face, and the CYGNSS satellites receive the reflected signal
within the field-of-view of its receiving antenna. Usually, the
instruments are always kept ON in a low data volume gather-
ing mode, where the information is clipped and compressed
(with loss). We are interested in a high data volume gath-
ering mode termed the RawIF mode, where observations in
raw format can be retained and downlinked at locations of
interest.

Figure 1 illustrates the setup for monitoring of the wild-
fire risk using CYGNSS satellites. The U.S. Geological Sur-
vey (USGS) fire danger forecast model is utilized. 7-day
forecast products for fire potential index, large fire probabil-
ity, and fire spread probability are produced and made avail-
able in public domain. The product of interest in this work is
the Wildland Fire Potential Index (WFPI)-based Large Fire
Probability (WLFP) forecast, which is an estimate of risk
(probability) that a new fire will burn to more than 500 acres
(202 ha) (U.S. Geological Survey, 2023).

Figure 2 shows the USGS WLFP day-1 forecast of 1
Aug 2020. This was produced over a 1km grid over the
contiguous U.S., and each grid-point is assigned a WLFP
value in the range 0 to >7. We remove grid-points associ-
ated with snow/ice, water, marsh, etc., which do not have a
valid WLFP value. The fine 1km grid is upscaled by a factor
of 1/10, to yield 47k grid points to reduce the spatial scale
of the problem. (The upper limit of the upscaling factor is
dictated by the size of the sensor footprint.) Observation re-
quests are issued for all the (upscaled) grid points. The ob-
servation priorities are equal to the forecasted WLFP, i.e. we
target locations of high pre-dicted WLFP.

The Earth Observation Simulator (EO-Sim) is utilized to
calculate observation opportunities and ground-station con-
tacts (Ravindra et al, 2021). The satellite orbits are propa-
gated (forecasted) using a J2 analytical propagation model.
At each second, calculations are done to produce the grid-
points which could be observed (were the RawIF mode

Figure 2: USGS WLFP forecast (day 1) of 1 Aug 2020

enabled). Three ground-stations are considered: Prioranet
ground stations in (1) South Point, HI, USA, (2) Santiago,
Chile and (3) Western Australia. Contact opportunities with
these ground-stations are calculated to yield time-periods at
which data downlink is possible.

Planner: The function of the planner is to schedule the
observations and data downlinks, subject to resource (data
storage capacity and downlink rate) and physical (limited
opportunities to observe and downlink ) constraints.

Operations: The concept of operations involves the plan
being verified by the Mission Operations Center (MOC) and
uploaded to the satellites. Data is downlinked and is utilized
to improve the predictions of the fire danger (Ravindra et al.,
2023).

Planning challenges:

• The key challenge is the huge search space, a sequence
of 228,234 binary choices for our experiments. This is due
to modeling multiple coordinated satellites with 1 sec-
ond temporal resolution over large planning horizons (12
hours in our experiments). The small 1-second temporal
resolution of the planning model is related to the satel-
lites’ speed.

• Integrated model for data collection and data downlink,
with extremely limited data storage capacity. It takes 1
second to collect an image, and 20 seconds to downlink
1 image, and we can only store 60 images at a time.

• Modeling a First-In-First-Out (FIFO) data storage queue
is a major challenge for declarative Mixed Integer Pro-
gram (MIP) equations (we’re still working on it), but easy
for the procedural model presented in this paper.

• Coordinating the operations of distributed satellites.
• Every image we collect contains multiple target loca-

tions. The planner can only choose images not individual
targets, but our objective is based on the targets. As far as
we are aware, this is an extra degree of freedom we have
not seen in related research, which introduced complica-
tions. Part of this challenge is related to coordinating the
satellites so they do not observe the same target.



Figure 3: Comparison with (Levinson et al., 2022)

• Observation opportunities to targets, and ground-station
contacts are aperiodic. Periodicity would have helped re-
duce the problem size, but the nature of the orbital dy-
namics of the satellites results in no definite pattern to
exploit.

Related research: Within the surveyed literature, (Levinson
et al. 2022) has elements in common with that presented in
this paper. That planning problem involved determining the
optimal series of observations to be made by a constellation
of satellites over a spatial domain encompassing majority of
the land surface of Earth. The land surface was represented
by a set of discrete point locations and each point was as-
signed a scientific value. Satellites had the ability to slew
and collect rewards which varied based on the observation
angle. The key differences with respect to our work are sum-
marized in Figure 3.

(Cho et al., 2018) present a Mixed Integer Program (MIP)
solution for generating observation and downlink plans for
multiple satellites with data storage capacity limits. Al-
though similar to our problem in some ways, it’s very dif-
ferent in others. First, they are scheduling generalized ”ob-
servation” and ”downlink” tasks without tracking details
of when any specific target location is observed or down-
linked. In contrast, each of our observations collect data on
multiple target locations, and our science rewards are tied to
each target rather than the ”observation” task.

Another major difference is that they separate downlink
planning from observation planning as to different plan-
ning problems. They first produce a downlink plan (the time
windows when each satellite can downlink data), and then
schedule the observations to maximize the rewards from all
selected observations. The downlink windows generated by
the first step are used to constrain the observation tasks,
while maximizing rewards for all observation tasks, and en-
forcing a constraint that data storage never exceeds capacity.

Their objective function is not a function of downlinking,

as the scientific value is obtained only by observation during
the observation scheduling phase. They don’t track when im-
age data for any specific target location is down-linked while
our objective depends on each target being both observed
and downlinked. This means they don’t deal with compli-
cations such as a target location’s data being only partially
downlinked at any specific time. Tracking which target data
has been downloaded is important because it only becomes
useful when it reaches the hands of users.

They provide experimental results comparing their sys-
tem vs. a first-in-first-out (FIFO) ”greedy” heuristic (fill up
storage ASAP), and a model without storage (or energy) ca-
pacity constraints to provide an upper bound on the objective
function.

(Herrmann and Schaub, 2023) use Monte Carlo Tree
Search (MCTS) for satellite observation scheduling and
downlinking with capacity constraints for a single satellite,
but they are focused a very different application than ours.
They use MCTS to ”play” against a high-fidelity Markov
Decision Process (MDP) in order to generate training ex-
amples for a neural net. The neural net produces a reactive
state-action policy for onboard (online) execution, to opti-
mize observation collection for a single satellite. MCTS is
used offline to generate state/value estimates to train a neu-
ral net and produce a policy for online execution (on-board
the satellite). No ”optimal” plan is produced as the MCTS
plans are only training cases for the reactive online policy.
They evaluate how well their policy handles situations which
are outside the training set. In contrast, we focus on optimiz-
ing complete plans for specific situations known in advance.
Their model includes storage capacity limit and downlink
rates.

Flow Shop Scheduling is a variant of job shop scheduling
where each job must flow through a fixed sequence of differ-
ent machines. Our application involves a model of collecting
each image in a First-In-First-Out (FIFO) queue so that im-
ages are downlinked in the same order they are collected.
This can be seen as a variant of flow shop, where the FIFO
queue represents a sequence of machines each image must
flow through. Each image flows from the back of the queue
to the front. Our application differs from standard flow shop
because the # of machines each job must flow through de-
pends on how much data is already in the queue, while in
standard flow shop all jobs flow through exactly the same #
of machines. In our case, if the queue is empty, then the job
only flows through 1 machine. If the queue is full, then the
last job flows through as many jobs as the queue size. Also,
classic flow shop requires all jobs are scheduled, but we have
too many observation jobs to do them all, so some jobs will
never enter the flow shop at all. It’s an oversubscribed prob-
lem.

(Xiao et al., 2019) present a variation of ”flow shop”
where there are only 2 machines: observe and downlink.
They present a MIP model for a ”multi-satellite observation
and data downlink scheduling problem”. They integrate ob-
servations and data downlinks but have no storage limit (as-
suming infinite capacity), and all targets must be observed,
in contrast with our application. They support FIFO data
collection/downlink queue model like us, where tasks are



Figure 4: Planner Architecture

downlinked in the same order they are collected. They also
support a ”non-permutation” schedule where the collection
and downlink sequences may be different which we do not
do.

It’s unclear how to add a storage capacity constraint to
their model because that requires ensuring capacity is never
exceeded, at any time. They represent time intervals rather
than individual timepoints. We’d need to add constraints to
enforce storage capacity for every individual timepoint with-
out significantly increasing the search space to model every
tick within their time windows.

Their problem size is relatively small, 10 ”tasks” (obser-
vations or downlinks) in four days while ours is approxi-
mately 2000 tasks in 12 hours. Their objective function is
different. Since all tasks must be completed, they are mini-
mizing completion time (makespan), while we are given the
completion time (our 12-hour plan horizon) and are maxi-
mizing the science rewards collected for the subset of targets
which get selected for the plan.

Figure 4 shows the planner inputs, processing, and out-
put. It produces a plan for each satellite, shown on right,
which specifies what command to execute for every second
in the 12-hour plan horizon. The command ”***” indicates
”forced idle” times when there are no opportunities to either
collect an observation or downlink. The command ”RAW”
and ”DNL” are the names of our observation and downlink
commands, respectively. The + and - symbols indicate when
data is added or removed from storage, respectively.

Decision Variables: A key input is a set of decision vari-
ables. We define a set of decision variables cmdi,t, each rep-
resenting the command choice for sat si at time t. ∀t ∈ {all
timepoints when sat i has either a target viewing opportunity
or a downlink opportunity}. The duration of each timepoint
(i.e., the temporal step size) is 1 second. The reason for this
1 second granularity is related to the speed of the spacecraft.

Figure 5 shows examples of these decision variables. The
first variable says sat 2 at time 28 has a choice of observing
targets 27 and 39, or it may remain idle. The second variable

Figure 5: The choices file defines the planner’s search space

says sat 3 at time 42 has a choice of downlinking data to the
ground station in Hawaii, or remaining idle.

A preprocessing step produces this list of decision vari-
ables with their domains (choices) shown in figure 5. The
preprocessor reads a variety of files which specify when
each satellite has observation and downlink opportunities,
and it consolidates them into a single ”choices” file in the
above format which defines the planner’s search space. The
variables are sorted chronologically. For example, all com-
mands for tick 10 will be chosen before any commands for
ticks > 10.

We don’t model every second in the horizon, only those
times when there is a choice to make. There are no decision
variables for times when there are no observation or down-
link opportunities. The experiments presented below have 4
satellites and a 12-hour plan horizon, resulting in a total of
28,234 binary decision variables. This means the number of
nodes in the search space of unique plans is 228,234.

This huge search space is a key challenge for the plan-
ner: How to find a needle (good plan) in a haystack (infinite
plan variations) within a couple of hours of search? We are
aiming for the ability to upload new satellite plans every 3
hours, which dictates our solver time limit.

Another key input to the planner is a list of target values,
which specify the scientific value (reward) for observing and
downlinking every target which appears in the choices file.
This value is a function of the USGS. WLFP forecast data in
Fig 2. (U.S. Geological Survey, 2022).

The planner’s objective function maximizes the aggregate
reward for the collective system of satellites, where those
rewards are based on the target values for images collected
and downlinked.

Planner methods: Our planner is implemented in a new
version of Propel: The Program Planning and Execution
Language (Levinson 1995; 2005; 2020). This new ver-
sion, dubbed ”Propel-MCTS” integrates non-deterministic
Python with Monte Carlo Tree Search (MTCS). It allows
non-deterministic choice points (assignment statements) to
be embedded anywhere in Python, and uses MCTS as the
search engine that searches through the space of program
variations defined by those choices.

All versions of Propel support automatic planning with a
procedural action model (in this case, Python). This is part of
a line of research on integrated planning and reactive execu-
tion, where the planner uses a procedural model, sometimes
called an ”operational model” (Patra et al.). Propel is also re-
lated to systems designed for tightly integrated planning and
reactive execution including IDEA (Muscettola et al., 2000;
2002) and (Neufeld et. al., 2018; Neufeld 2020).

This application does not currently operate in a reactive
execution environment. However, we leveraged the procedu-
ral modeling flexibility of Python for rapid prototyping and
development to implement our application within a matter
of weeks. In particular, Python makes it very easy to im-
plement our application’s dynamic constraint enforcement
(described below). In contrast we have spent many months
developing a declarative MIP mode which quickly becomes
intractable and is not yet scalable to work on even our small-
est test case. We are also preparing for future application



Figure 6: Sequential decision procedure in Propel with
choice points

scenarios to support active wildfire management which will
require more reactive execution.

Figure 6 shows our Propel application’s sequential deci-
sion making procedure. Line 1 initializes the state model for
each satellite (data storage is empty and battery charge is
full). Line 2 creates all the decision variables. We create one
decision variable for every time t when sat i has an observa-
tion or downlink opportunity.Each variable’s domain is ei-
ther {observe, idle} or {downlink, idle}.

Line 3 tests if any decision variables remain unresolved.
If there are open decision variables, then pop the first one
from the list. They are chronologically sorted, so this will be
the next variable in sequence, although it could be for any of
the satellites. Examples of this variable are shown in figure
5. Each has a name and a set of (binary) choices. Line 5
retrieves the choices for the current variable and line 6 calls
chooseValuewith those choices to add to the MCTS tree.
chooseValue statements (line 6) define the search

space explored by MCTS. chooseValue takes an op-
tional heuristic parameter to sort the choices, typically an
application-specific, greedy heuristic. If no heuristic is spec-
ified, then choices are chosen randomly.

After each choice is made, the state is updated on line 7 to
reflect adding or removing data from storage, and updating
the battery charge estimate. The State Model is a python dic-
tionary representing the state of each satellite (data storage
and battery charge) over the course of the plan horizon. The
state is updated after each command is added to a satellite’s
plan.

Data Storage Model: Our data storage model is based on
the CYGNSS satellite specs (Ruf et al., 2018). Each obser-
vation collects one ”image” (corresponding to 1 second of
observation) which may capture several targets (Figs 5 7).
Each observation (image) command fills up 96.22 megabits
of storage, and each downlink command frees up 4 megabits
(about 5% of an image). If storage is full, it takes about 20
downlink commands to free up enough space to collect an-
other image. Images are stored in a First-In-First-Out (FIFO)
queue, so that they are collected and downlinked in the same
order.

Figure 7 illustrates how images are placed in the FIFO
queue. Each image in the queue is associated with a set of
targets captured by the image, the aggregate target value for
all targets in the image, and the percent of each image down-
linked at any given time. The objective is a function of the
percentage of each image which is downlinked. One unique

Figure 7: Data storage queue where images are collected and
% of image downlinked is tracked

aspect of our application is that each image collects data on
multiple targets and our objective is to maximize the tar-
get values. This is an extra complication for the planner to
deal with compared to related work where each image cor-
responds to an individual target and reward.

Constraints are enforced on line 8 of figure 6,
by propagateChoice()which uses forward checking
(Russell and Norvig, 2020) to rule out any future choices
which are inconsistent with the newly chosen command. For
example, if an observation command fills up storage to ca-
pacity, then we remove all future observation choices until
the next downlink opportunity. The decision variables are
updated as a result.

This forward constraint checking is a powerful feature.
When propagateChoice() removes one of the binary
choices for a variable, then that variable doesn’t need to
be a branch in our search space. Ultimately the number of
choices in any given plan is less than the original number
of decision variables because many variables are removed
along the way through choice propagation.

Coordination across the swarm is achieved by enforcing
a ”no duplicate observations” constraint. When one satellite
observes a target, that target is removed from the choices of
all future observations. All constraints are implemented in
Python in propagateChoice(cmd), which operates on
the state dictionary that is updated on line 7.

Constraints
1. No observations allowed when storage is full
2. No downlinks allowed when storage is empty
3. Always downlink if storage is not empty
4. Never allow battery charge to dip below 70%
5. No duplicate target observations (across all satellites)

The full set of constraints enforced by
propagateChoice() are shown above. The first 4
are enforced per satellited and the last is enforced across the
entire set of satellites. Initially, we did not have constraint
3. The Greedy heuristic prefers to downlink vs. re-main idle
because downlinking will contribute to the objective while
idle will not. However, we discovered that soft constraint
(preference) was not utilizing every downlink opportunity.
We added constraint 3 as a hard constraint which removes
the ”idle” choice for every downlink opportunity when
storage is not empty. This ”forced down-link” had a sig-
nificant impact on solution quality as will be shown in our
experimental results.

Objective Function: The planner’s objective is to:
maximize

∑
i imageV alue(i)∀i ∈ {all images in all

satellite plans}. We calculate the imageValue as the sum



Figure 8: imageValue calculation used in objective function

of the target value for all targets in the image. The image
value is split in half: 50% of value is collected when image
is taken, and 50% of value is collected as image is down-
linked (pro-rated by %downlinked). The image value in the
objective is calculated as shown in Figure 8, which deter-
mines the value of any image at a given time, which is a
function of the % of image downlinked at that time.

Greedy heuristic: The chooseValue()statement (line
6) takes an optional local ”greedy” heuristic, which sorts
choices based on their expected contribution to the objec-
tive. Observations and downlinks both contribute to the ob-
jective (figure 8), while IDLE does not, so observation and
downlink commands are preferred over IDLE. If the optional
heuristic is not provided, then choices are random.

Why MCTS? The code in Fig 6 is similar to that used
by (Levinson et al., 2022). A key difference is the search
engine underneath which explores the space created by the
chooseValue statements. (Levinson et al., 2022) used a
search engine which maintained a search node for every ex-
plored choice, to facilitate backtracking. That proved to be a
huge performance problem because it required more mem-
ory than available on the Mac laptop where it ran. That per-
formance problem is the primary reason we chose to use
MCTS, which requires only a single process per tree, result-
ing in linear scaling of time and space requirements as the
problem size grows.

With MCTS, the code in Figure 6 is simulated on ev-
ery rollout with different command choices selected on
each simulation. MCTS helps because our search space is
huge, and MCTS is designed for huge search spaces where
a balance between exploring new choices vs. exploiting
prior choices which worked well is critically important for
avoiding bias and local minima. MCTS uses a domain-
independent heuristic called Upper Confidence Bound for
Trees (UCT) to control the bias (preference) for exploit vs.
explore.

Figure 9 illustrates our MCTS tree. The root node starts
at time 0 (T=0), and each node has two children for a bi-
nary command choice: [OBS, IDL] or [DNL, IDL]. These
choices are defined by the choices file shown in figure 5.
Each child node represents a choice for a time later than its
parent. A ”rollout” also called a ”simulation” involves fol-
lowing a sequence of decision variable choices from the root
(time T = 0) to the end of the plan horizon (T = 43,200 for
our 12-hour test scenario). At the end of each rollout, the ob-
jective is backpropagated through the tree to update the re-
inforcement learning statistics, tracking the # of times each
node is visited by a rollout and the total accumulated reward
from all rollouts which passed through it.

For this application, we are using MCTS ”off-label” be-
cause we generate & collect whole plan vs. incrementally
planning for 1 step at a time. This is because we are not
executing the plan and we don’t have exogenous events or

Figure 9: MCTS tree for our application. Each node corre-
sponds to a binary decision variable

an ”opponent”. If we wanted to use MCTS the usual way
as a two-player game, we could view the storage limit and
the observation and downlink opportunity time windows, as
the ”moves” of an ”opponent” (satellite, environment). For
example, if we greedily fill up all storage ASAP, then our
”opponent” blocks our ability to collect any more data until
we free up some storage space. Future work may also in-
clude observation and downlink execution failures, such as
the image sensor failing, or a downlink failing because the
ground station is busy servicing a higher-priority mission.
Propel itself does support using MCTS in a traditional re-
active manner, where a single next step is selected and exe-
cuted, and has been used that way in other applications.

An important contribution of this work is adapting the
MCTS stages select, expand, simulate and update to work
on a search space generated by nondeterministic Python.
chooseValue() statements can be embedded anywhere
in arbitrary Python code, defining the search space. MCTS
is the search engine which explores that space using rein-
forcement learning and balancing exploration and exploita-
tion via the UCT equation. During the select stage of each
rollout, chooseValue() uses UCT to choose which node
to expand. The expand stage and simulation stages both use
the same policy for making choices: either the greedy heuris-
tic or random, whichever is specified in the chooseValue
statement. Experiments below explain how/when a mix of
greedy and random is also used.

New MCTS stage for procedural models: Due to the pro-
cedural nature of the Python code within which choice
points are embedded, we needed to add a new MCTS stage:
replay, which occurs between the select and expand stages
as follows: When an MCTS tree leaf is selected to be ex-
panded, and that leaf is not the root, then we must ”replay”
all the choices from the root to the leaf to match the Python
computational context for each choice point. Since each roll-
out starts a new execution of the Propel application shown in
Figure 6, we need to replay all of the plan’s prior choices to



retrace the plan choices from the beginning of the rollout to
the current choice being selected (which may be embedded
in multiple loops, conditional and subroutine calls). For ex-
ample, if a choice point is encountered on the 3rd iteration of
a while loop, or if some state condition is true when a choice
point is reached, then we need to set up that same context so
that the computational context match when the leaf node is
expanded.

Parallel MCTS: To speed up solver performance we
leverage the 10 CPU cores available on our Mac laptop.
We use Python’s multiprocessing module to exploit multi-
ple CPU cores. (Steinmetz and Gini, 2021) and (Chaslot et
al., 2008) describe 3 ways to leverage multi-processing for
MCTS: Leaf parallelization, Tree parallelization, and Root
parallelization. We implemented Root Parallelization, and
Tree parallelization is in development.

With root parallelization, each process creates and man-
ages a separate MCTS tree, and no information is shared
between trees. Each process creates a tree by running N roll-
outs (Monte Carlo simulations). For each tree (process), the
rollout with the highest objective score is tracked. After all
processes finish, the rollout with highest objective across all
processes is selected as the final plan.

The rollout (simulation) policy defines how choices are
made during the MCTS expand and simulation stages. The
policy may be 100 % greedy, 100 % random, or a mix of the
two, which is described further in the next section.

2 Evaluation
All experiments use the same scenario which includes 4
satellites and a 12-hour plan horizon. The planner’s search
space (defined by the choices input file) is identical for all
test cases. The test cases differ only in the planner configura-
tion. All experiments were run on a 2023 MacBook Pro, M2
Pro chip, 32 GB, with 12 total CPU cores (8 performance
and 4 efficiency).

Our experiments are designed to quantify the impact of
several planner configuration parameters on solution speed
and quality. We define solution speed as the amount of solver
time required and solution quality is measured by 3 quan-
tities: Objective score, # of images collected, of images
downlinked.

Figure 10 shows the test cases used to evaluate solver
performance and solution quality for different planner con-
figurations. The cases are sorted from highest objective
score to lowest. The columns are: test case ID, # of roll-
outs, # of parallel processes, rollout policy (greedy/random
or % random), ’hrd dnl’ is the hard constraint for down-
linking (constraint 3), reinforcement learning enabled (L),
solve time for all processes to complete all rollouts, objec-
tive score. The last column is the ratio of # of downlinked
targets over the # of observed targets. In cases with multi-
ple rolls and/or multiple processes, the stats for the highest
scoring objective are shown.

The rollout policy describes how choices are made for
node expansion and simulation. It is either 100 % greedy (G)
or 100% random (R). With multiple processes, each process
uses greedy with some percentage of choices being random.

Figure 10: Evaluation test cases and results

The percentage listed in the column is the random percent-
age for the highest scoring rollout in in that process, among
all rollouts in that process. This is the same rollout used
for the time, obj, and downlinked/observed statistics in the
rightmost 3 columns.

No learning can occur with only a single rollout (cases 9-
11, 23-27). With multiple rollouts and learning is disabled
(cases 6 and 10), it is pure stochastic simulation and the
best result over all simulations is shown in the table. In
this mode without learning, MCTS stages select, expand,
and backpropagate are skipped. Each rollout starts with the
root node in ”simulation” stage. This configuration is de-
signed to assess the impact of the UCT reinforcement learn-
ing on solution quality. Cases 9, 11, and 12 are same test.
They are all single rollout and 100% random, so we repeated
them 3 times to demonstrate stochastic variance with ran-
dom choices. The same is true for cases 26-28. These cases
represent ”pure” stochastic search, without any reinforce-
ment learning (L). The difference between the first set (9,11,
and 12) and the second set 26-28, is that second set has the
hard downlink constraint turned off, resulting in much lower
objective.

In most cases above, when multiple processes are used,
then 1 process is greedy (0% random), and 1 process is
100% random, and all other processes have different random
percentages, evenly spaced, ranging between 0 and 100. If
there are 10 processes, the random percentage for each pro-
cess increases from 0 by increments of 10. For example,
if there are 20 processes, the random percentages increase
in increments of 5%. The exceptions are cases 1,2, and 3,
which are denoted with ”R” in the greedy/random column.



For those cases we forced all processes to be 100% random.
Analysis of results: Solve time scales linearly with # of

rollouts ( 2 to 4 secs/rollout). Solve time does not increase
with # of processes up to 10 processes because we have 10
CPU cores on our laptop. Multiple CPUs are still leveraged
up to about 20 processes after which there are diminishing
returns on speedup.

Mandatory downlinks (hard constraint 3) results in signif-
icant improvement of objective score and showed the greedy
heuristic is weaker than we originally thought. Without the
hard constraint, the best scores are with 5-10% randomiza-
tion, leading us to the hypothesis that the heuristic was pretty
good. However, after adding the hard constraint for manda-
tory downlinks, the best scores are with 90-95% random-
ization, suggesting our greedy heuristic is not as good as we
thought. We believe this improvement is because higher ran-
domization results in more diverse training cases for MCTS.

The reinforcement learning provided by UCT helps to im-
prove the objective score, compared to cases where learning
is turned off (pure stochastic simulation). This shows that
although we use MCTS off-label, UCT helps.

Figure 10 tests are sorted in from best objective to worst.
Test 1 is the best result with objective 6,131, with 40K roll-
outs and 10 processes. This case does not use the greedy
heuristic at all. Each of the 10 processes make 100% random
choices. Test 2, the second best, has 20K rollouts and 20 pro-
cesses. Both cases 1 and 2 have a total of 400K rollouts, but
1 is better because each of it’s 10 processes is learning from
40K MCTS training simulations (rollouts), while in case 2,
each of the 20 processes is learning from 20K training sim-
ulations. This provides clear evidence that MCTS produced
better results (higher objective) with the random simulation
policy and with the reinforcement learning of UCT.

Results clearly demonstrate that 521 is the maximum
number of images which can be downlinked for our 12-hour
scenario. Future work will chain together multiple horizons
so any collected data not downlinked in one horizon will be
downlinked in the next horizon.

3 Conclusion
Our experiments have provided initial answers to our re-
search questions about what is the best planner configura-
tion for our application. Our best configuration was: 40,000
rollouts with 10 processes vs. 20,000 rollouts with 20 pro-
cesses. Both cases did 400,000 rollouts but it was clearly
better to have fewer processes, because that each MCTS pro-
cess learned from more rollouts rather than spreading out
those training cases among more processes which did not
share results.

We have learned the recommended way to implement our
proposed solution for distributed satellite observation down-
link planning is:
• Have the hard downlink constraint
• Have a (100%) Random rollout policy (vs. Greedy) pro-

duces better solutions by learning from more diverse
training examples.

• Investigate the returns on the # processes on the particu-
lar machine the code is set to run, and assign the appro-

priate # processes.

• Do as many rollouts as time permits to learn from more

Contributions: We developed a novel solution for an im-
portant and novel approach to improved wildfire danger pre-
diction. We presented novel planning methods for managing
our application’s huge search space. We presented empirical
evidence about which planner configurations work best.

• Our experiments helped answer key research questions
for our application, including: what planner configura-
tion produce the highest objective functions, what is a
good objective score, and how long does the planner need
to run to achieve a good objective score.

• Adapted MCTS for non-deterministic Python. Identified
and implemented a new MCTS stage, Replay, required
for procedural action models.

• Propel-MCTS has demonstrated value for rapid develop-
ment of procedural planner constraints (vs. declarative
models like MIP).

• Integration of MCTS with Python has many potential
benefits for a range of other applications, particularly
those requiring integration of planning and reactive ex-
ecution. Propel-MCTS enables planning with a procedu-
ral action representation (hierarchical subroutines, loops,
conditionals), which can be directly executed for both
planning and reactive execution.

Future Work: We are developing methods for MCTS Tree
parallelization, where multiple processes will share and up-
date a single MCTS tree, so the learning statistics will be
shared between all processes. With our current root par-
allelization, no learning is shared between processes. We
are developing a Mixed Integer Programming (MIP) model
to provide an optimality benchmark to compare with our
MCTS results. We plan to evaluate different values for the
UCT tuning parameter C, which controls search bias to-
wards exploration vs. exploitation. We plan to double the
problem size to 8 satellites and a 24-hour plan horizon.
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