
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2847804

Reaction-First Search

Article · May 2003

Source: CiteSeer

CITATIONS

19
READS

50

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Intelligent, autonomous systems for space exploration View project

Mark Drummond

Apple Inc.

66 PUBLICATIONS   1,234 CITATIONS   

SEE PROFILE

John Bresina

NASA

93 PUBLICATIONS   1,773 CITATIONS   

SEE PROFILE

Rich Levinson

NASA

24 PUBLICATIONS   468 CITATIONS   

SEE PROFILE

All content following this page was uploaded by John Bresina on 17 February 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2847804_Reaction-First_Search?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2847804_Reaction-First_Search?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Intelligent-autonomous-systems-for-space-exploration?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark_Drummond2?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark_Drummond2?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Apple_Inc?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark_Drummond2?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John_Bresina?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John_Bresina?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/NASA?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John_Bresina?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rich_Levinson?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rich_Levinson?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/NASA?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rich_Levinson?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John_Bresina?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_10&_esc=publicationCoverPdf


Reaction-First SearchMark Drummond Keith Swanson John Bresina Richard LevinsonSterling Software NASA Sterling Software Recom TechnologiesAI Research Branch, Mail Stop: 269-2NASA Ames Research CenterMo�ett Field, CA 94035-1000 USA
IJCAI-93, Chamb�ery, France

AbstractThis paper presents Reaction-First Search(rfs), an incremental planning algorithm thatproduces plans for execution by a reactive sys-tem. The reactive system is independentlycompetent in the sense that it is able to producebehavior in its environment without a plan.This reactive system has some prior probabilityof satisfying a given goal, and plans found byrfs serve to increase the probability of goal sat-isfaction above that prior. rfs is usefully incre-mental in that any partial plan it produces canbe executed by the reactive system. While anygiven partial plan may or may not increase thereactive system's goal satisfaction probability,the expected performance of rfs is to monoton-ically increase the goal satisfaction probabilityas a function of time spent planning.1 IntroductionMost general-purpose planning algorithms cannot beused incrementally. Since initial steps in a partial planare not necessarily part of a solution, planning algo-rithms generally do not produce any plan for execu-tion until a complete plan has been found. Such non-incremental algorithms fail to address the needs of anagent that must act before a complete plan is available.This paper presents a general-purpose planning algo-rithm that is incremental. The algorithm, Reaction-First Search (rfs), generates partial plans in service ofa given goal. rfs is used by a situated planner to pro-vide guidance to an independently competent reactivesystem. Without a plan, the reactive system executes ahuman-provided program, and by so doing, stands somechance of producing a behavior that satis�es a given goal.The partial plans found by rfs help the reactive systemhandle di�cult situations that were not foreseen by theprogrammer. rfs reasons about the reactive system'sbehavior, giving it plans to help satisfy the goal. Wecannot guarantee that the single plan found by rfs af-ter an arbitrary amount of computation increases thereactive system's chances of satisfying the goal. How-ever, averaged over a number of trials, we can guaranteethat rfs monotonically increases the reactive system's

goal satisfaction probability as a function of computa-tion time. Thus, the expected performance of rfs is tomonotonically improve the reactive system's goal sat-isfaction probability { it is this expected improvementproperty that makes rfs usefully incremental.2 BackgroundA situated agent often needs to take action withinbounded time. To facilitate this, we suggest that when-ever possible, a prior reactive competence should behand-coded by a programmer. This approach avoids ex-pensive automatic planning whenever the prior compe-tence is capable of solving a given problem. Our generalarchitecture is based on this idea and includes two con-nected components: a planner and a reactor. For detailssee Bresina and Drummond [1990], Drummond, et al.[1991], and Bresina, et al., [in press].Bresina and Drummond [1990] introduced the princi-ple of independent competence to ensure that the reactoris able to take action with or without a plan. When thereactor is told to act, it executes the currently availableplan and then falls back on a reactive program de�nedby the programmer. If a complete plan is available thenthe execution of that plan will cause the reactor to solvethe problem. If absolutely no plan is available then thereactor executes only the programmer-provided reactiveprogram. When there is a partial plan available, theplan takes the reactor part of the way, and the reactiveprogram takes over at the plan's end.These intermediate cases lead to the following prob-lem. If the reactor executes a partial plan before thatplan is known to lead to a solution, how can we be surethat this will not impair the reactor's performance? In-deed, the entire reason that search is an essential part ofproblem-solving is that there is no purely \local" way toguarantee that any given partial plan can be extended toa solution. This is the problem that rfs solves. The ex-pected performance of rfs is to monotonically improvethe goal satisfaction probability of the reactor, no mat-ter how much time is spent searching. rfs accomplishesthis by reasoning about possible behaviors of the reac-tor and constraining them as appropriate. rfs can beused incrementally, releasing partial plans computed inthe time available.



3 Basic de�nitionsThis section de�nes the terms used throughout the restof the paper. Most of these terms are reasonably stan-dard. The planner is covered �rst, the reactor second.The plannerBriey, a state is a structure that describes a situa-tion in the application domain. An operator describesan executable action and is considered enabled in a statewhen the action denoted by the operator can be exe-cuted in the corresponding situation. An operator canbe applied to a state in which it is enabled, producinga successor state that describes the e�ects of the actiondenoted by the operator. The strips operator language[Fikes and Nilsson, 1971] is an example of this but isactually a special case; more general languages are pos-sible. A trajectory is a sequence of operator applications,and any given trajectory models one possible behaviorof the reactor.A search tree is a tree of trajectories rooted at a com-mon state. A level in a search tree is a set of statesthat are the same distance from the root. A goal is afunction1 that maps a trajectory into the set ft; fg. Ifthe goal function returns t for a given trajectory, thenthe trajectory satis�es the goal. A problem is a speci�cinitial state, a set of operators (de�ned in terms of oper-ator enablement and application functions), and a goal.A pre�x partial plan (or just pre�x plan) for a givenproblem is a trajectory constructed from the problem'soperators, rooted in the problem's initial state. Such aplan is a \pre�x" since it speci�es the �rst few actions ina trajectory which may or may not lead to the eventualsatisfaction of the problem's goal. A solution plan for agiven problem is a trajectory that satis�es the goal.The reactorA policy is a function that maps a state into a set ofenabled operators and is provided by a programmer tospecify how the reactor should behave in a given set ofsituations. Thus, a policy de�nes a prior reactive com-petence for the reactor. For each possible state S and fora given policy po, if j po (S) j � 1, we say that the pol-icy is deterministic; otherwise, if there exists a possiblestate S for which j po (S) j > 1, we say that the policy isnondeterministic. Since a policy is used to de�ne the re-actor's prior competence, it is largely counterproductiveto allow the policy to encode a general purpose problemsolving mechanism (a planner, for instance). Thus, weinsist that any given policy be computable within timeand space that are bounded by constants.A policy is executed by the reactor as follows. First,a state S is created to describe the agent's currentsituation. Next, the policy is evaluated on S, pro-ducing a disjunctive set of recommended operators,fO1; O2; : : : ; Ong. If this set is empty then the reactorhalts. Otherwise, one particular Oi is randomly selectedand executed.In terms of the planner's search space, the subtreede�ned by the policy from a state S is the tree rooted1We disallow goal functions that permit the growth ofin�nite length trajectories.

at S de�ned by recursive application of all policy-recommended operators. Thus, the states reachablefrom S under the policy are a subset of all possible statesreachable from S. A policy state is simply a state forwhich the policy returns a non-empty set of operators.We measure the reactor's prior competence for a givenproblem instance as the probability that the reactor cansatisfy the goal using only the programmer-de�ned pol-icy. This probability can be explicitly measured, for ex-ample, by repeatedly placing the reactor in the problem'sinitial state and allowing it to attempt to satisfy the goalby executing its policy. The number of samples requiredto obtain high statistical con�dence is a function of thenondeterminism in the policy. If the policy is determin-istic then a single run su�ces. If there is a large degreeof nondeterminism in the policy, then a large number ofruns might be required.The plan execution model of the reactor is as follows.At each point in time there is a pre�x plan de�ned bythe trajectory that terminates in the planner's \current"search state. If the reactor is told to act, it �rst executesthis pre�x plan and then executes its policy until the goalis satis�ed or until the policy returns the empty set. Ifthe current pre�x plan causes the reactor to produce abehavior that satis�es the goal, then the policy is notexecuted. If the current pre�x plan is null, then thepolicy is executed immediately.This paper makes some assumptions regarding the ex-ecution environment. We assume that no errors occurduring plan execution, and we also assume that sens-ing is free and provides enough information to de�ne asearch tree that includes a solution (if one exists). Theseassumptions merely simplify the discussion; they are eas-ily relaxed, but space precludes a detailed discussion.Finally, note that rfs does not address the question ofhow long to plan { it simply uses whatever computationtime is available.4 The problem and a solutionAssume that a timer, t, is started when a problem is pre-sented to the planner and reactor. At t = 0, the reactorcan be told to run and, by executing its policy, standssome chance of solving the problem. If the reactor wereto sit idle until the planner released a pre�x plan for exe-cution at t = 1, how would the reactor's performance bea�ected? Again, what if the reactor were to sit idle untilthe planner released a pre�x plan at t = 2? rfs guaran-tees that whenever the planner is stopped, t = 1; 2; 3; : : :,the expected performance of the reactor is never worsethan its performance at t = 0. Indeed, as we show below,the reactor's performance can be signi�cantly improved.The three principles of Reaction-First Searchrfs is a randomized search algorithm that requires theplanner to �rst reason about what the reactor would dowithout a plan. rfs uses the policy to de�ne a search-space bias, exploring the policy-de�ned subtree beforeany other part of the search space is examined. Thepolicy de�nes a set of possible reactor behaviors. Theplanner, guided by the policy, searches through the set



of trajectories that model those behaviors, looking forone that satis�es the given goal.There are three principles that di�erentiate rfs fromtraditional state-space search. These principles, togetherwith a de�nition of state-space search, constitute a de�-nition of rfs. The three principles of rfs are:1. All states in the policy-de�ned subtree must be ex-panded before all other states in the search space;2. After selecting a level in the search tree by anymeans, a policy state in that level must be randomlychosen for expansion;3. In any given policy state, policy-recommended op-erators must be randomly chosen for application.These three principles are all that is required by rfs;any state-space search procedure that follows them faith-fully implements our algorithm and consequently hasexpected performance that guarantees monotonic im-provement of the reactor's goal satisfaction probability.The proof of monotonic improvement [Drummond, etal., 1992] hinges on the observation that the probabil-ity of goal satisfaction at each level of the policy-de�nedsubtree is the same. rfs samples from these levels ina randomized manner, and this ensures that the proba-bility of goal satisfaction obtained at each point in timeis, on average, always greater or equal to that obtainedby the policy at time zero.2 The incrementality of rfscomes from the fact that it can be stopped whenever itis about to expand a state: the trajectory that connectsthe root to this current state de�nes a plan that can beexecuted by the reactor.The three principles of rfs are not as restrictive asthey might �rst appear. In fact, it is easy to implementrfs so that it explores the policy subtree in a variety ofways. We have experimented with standard depth-�rstand breadth-�rst search, as well as iterative sampling[Minton, et al., 1992; Langley, 1992]. Other implemen-tations are also possible; for instance, iterative deepen-ing [Korf, 1985] and iterative broadening [Ginsberg andHarvey, 1990]. One need only bias the search accordingto the three principles of rfs.Completeness and monotonic improvementrfs �rst explores the subtree de�ned by the policy,starting with the root state. If the search strategy usedfor this exploration is complete (for instance, depth-�rstsearch with chronological backtracking), and if a solutionexists in this subtree, rfs will �nd it. If a non-systematicsearch strategy such as iterative sampling is used thenrfs is only asymptotically complete. In essence, withrespect to the policy subtree, rfs is only as complete asthe underlying search strategy.If rfs discovers that there is no solution in the policysubtree, it selects an arbitrary open state and applies anarbitrary enabled operator, creating a new search state.The choice of which particular open state and enabled2Please note that rfs does not actually calculate the pol-icy's goal satisfaction probability. The monotonic improve-ment property is an objective statement about rfs: the al-gorithm exhibits expected monotonic improvement withouthaving to explicitly calculate any probabilities.

operator to choose is not dictated by rfs; the algorithmworks no matter how the state and operator are chosen.The only requirement, and this is important, is that thesubtree rooted at the new state must now be explored inthe manner dictated by rfs. By repeatedly generatingnew open states in this manner, rfs is clearly complete,again assuming that a complete search strategy is usedto explore each policy-de�ned subtree.Our hypothesis regarding Reaction-First SearchWhile rfs can be expected to monotonically improvethe performance of the reactor, there is clearly a sim-pler approach: don't let the planner release pre�x plans!With the principle of independent competence, the reac-tor's goal satisfaction probability would hold steady atthe point determined by its policy until su�cient timehad elapsed to allow a complete solution to be found.We call this alternate approach non-incremental, sinceit does not issue preliminary advice to the reactor.We hypothesize that rfs' release of pre�x plans canhave an advantage over the non-incremental approach.Speci�cally, we hypothesize that the partial plans foundby rfs can help the reactor avoid dead-ends that mightotherwise trap its policy. A dead-end for the policy isa state for which the policy returns the empty set andwhich fails to satisfy the goal. A critical choice point[Drummond, 1989] is a state from which there is an ac-tion that leads to possible success and from which thereis also an action that leads to necessary failure. In thecontext of rfs, a critical choice point is a state fromwhich the probability of goal satisfaction (under the pol-icy) is non-zero, but from which there exists a policy-recommended action that leads to a state from whichthe goal satisfaction probability is zero. We hypothesizethat rfs can have an advantage over the non-incrementalapproach since its pre�x plans can provide guidance tothe reactor at these critical choice points and thus helpthe reactor avoid dead-ends during execution.Figure 1 sketches our hypothesis regarding the generalrelationship between the non-incremental approach andrfs. Assume that the reactor's prior probability of goalsatisfaction is P . Thus, at time 0, there is a probabil-ity, P , that the reactor will satisfy the given goal. Thenon-incremental approach ensures that the reactor's goalsatisfaction probability holds steady at P until the ear-liest time at which a solution is found. This point isindicated on the computation time axis by \ES" (ear-liest solution). The average performance of the reactorwill then increase until it reaches a maximum at theplanner's latest solution (\LS") time, at which point theplanner always has a solution, if one exists. The preciserate at which the reactor's average performance increasesbetween ES and LS is a function of the search strategyand the search space.The important aspect of our hypothesis is the per-formance di�erence it predicts. The reactor's perfor-mance pro�le under rfs initially tracks that of the non-incremental approach, starting with a value of P at time0. Whenever rfs identi�es a critical choice point, theexpected goal satisfaction probability should increase(there are two such increases sketched in the �gure). The



0

1

ES LS

P

Computation Time

RFS

Expected
Goal 
Satisfaction
Probability Non−Incremental ApproachFigure 1: Hypothesis: Non-Incremental vs rfs.precise size and shape of the di�erence is again a func-tion of the underlying search strategy and search space.It is important to note, however, that the expected per-formance of rfs is never worse than that obtained by thenon-incremental approach and, according to our hypoth-esis, can sometimes be signi�cantly better. The nextsection experimentally explores this hypothesis.5 Empirical resultsWe have implemented rfs on a telescope schedulingproblem [Drummond, et al., in press], where the reactivepolicy is de�ned by a dispatch scheduler written by thecompany that builds the telescope controller. While wehave a working version of rfs for this scheduling prob-lem, we have not yet de�ned and carried out any exper-iments. Thus, in this paper, we present the results froma detailed study of rfs at work in a simulated domain,the NASA TileWorld [Philips and Bresina, 1991]. Thegoal of the experiment reported here is to evaluate thehypothesis outlined in the previous section.The problem class for this experiment is couched interms of a two-dimensional grid of cells. The task is toretrieve a tile from one room, B, and to carry it back toa particular location in another room, A. As shown inFigure 2, room A occupies the lower left portion of thegrid and room B occupies the upper right portion. Thegoal is satis�ed if the agent, while grasping the tile, isin the lower-left corner cell of room A. Di�erent prob-lem instances in this class vary in terms of the obsta-cles present in the rooms and between the rooms. For allproblem instances considered, the agent is initially in thelower-left corner of room A and the tile to be retrievedis initially in the top-right corner of room B. The �g-ure shows this common problem structure, illustratingall prior information available to the (human) designerof the reactor's policy.The policy we devised for these experiments is a simplehill-climber that uses a traditional Manhattan distancecalculation. The policy operates in three stages: �rst,move the agent from room A to room B; second, graspthe tile; third, move the agent back. The movement fromroom A to room B is itself implemented in three stages:�rst, move the agent from its initial location to one of thedoors of room A; second, move the agent to one of thedoors of room B; third, move the agent next to the tile.Any one of these subtrips can be halted by entrapment ina dead-end, since the policy uses Manhattan distance to

Room A

Room B

Figure 2: All prior information.suggest moves, and while this calculation provides usefulguidance, it is not guaranteed to �nd a solution. Thepolicy returns all moves suggested by the Manhattandistance calculation and hence is nondeterministic. Oncethe agent has grasped the tile, the return trip is alsoimplemented in three stages. As for the outward journey,each of these stages can be halted by entrapment in adead-end. Since the policy is not capable of physicallybacktracking there is no guarantee that it will solve theproblem. Even so, it works well for many problems andsatis�es the requirement of computability in time andspace that are bounded by constants.The dependent variable for this experiment is reactorperformance, measured as goal satisfaction probability,and the independent variable is planning time. Intu-itively, planning time should be measured in some metricunits; however, since we carried out this experiment inCommon Lisp, running on a Unix system, elapsed timeis only weakly correlated with the amount of time actu-ally spent planning. To overcome this, we observed thatthe time spent by the planner applying an operator to astate can be bounded by a constant. This is true sincethe evaluation of the policy takes constant time, as do allother operations involved with expanding a single state.While the precise value of this constant depends on a va-riety of factors, the important aspect is that a boundedamount of time is spent applying an operator to a state.We use the term step to refer to such an operator appli-cation. Thus, instead of measuring actual metric timewe measure the number of planner steps taken.To facilitate data collection, we designed an algorithmfor calculating the probability that the policy will leadthe agent into a dead-end. The procedure accepts aninitial and goal location and returns the probability thatthe agent will become trapped in a dead-end via theexecution of the policy. This procedure allows us to de-termine the probability of goal satisfaction without ex-plicitly executing the policy.Figures 3 and 4 show some of our results, and moreresults are reported in Drummond, et al., [1992]. The leftside of each �gure shows a particular problem instance,and the right side shows the reactor's goal satisfactionprobability as a function of planning steps. We used a



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

G
oa

l S
at

is
fa

ct
io

n 
P

ro
ba

bi
lit

y

Planning Steps

Reaction First Search
(RFS errorbars)

Non-Incremental Approach
(NIA errorbars)Figure 3: Problem instance and expected rfs performance.depth-�rst chronological backtracking version of rfs forthese experiments. Since the policy is nondeterministic,we ran rfs 500 times on each problem instance, and thegraphs in each �gure show the mean probability valueobtained together with errorbars characterizing the 95%con�dence interval.Each problem instance is consistent with the prior in-formation available to the programmer (Figure 2), buteach adds some number of obstacles. Obstacles have thegeneral shape of an \X" and are located either in therooms or between the rooms. The arms of these \X"sde�ne dead-ends that can trap the hill-climbing policy,and this is where planning can help provide guidance.Note, had this information been available in advance,we might have been able to formulate a better policy.The graph in each �gure shows the reactor's goal sat-isfaction probability under rfs and the same measurefor the non-incremental approach discussed in section 4.Since the non-incremental approach only releases com-plete plans for execution, the reactor's performance re-mains at the level de�ned by the policy until the plan-ner terminates. As we predicted, there is some varia-tion between the earliest and latest times at which theplanner terminates. More importantly, our predictionof a performance di�erence between rfs and the non-incremental approach is clearly demonstrated by theseexperimental results.Consider Figure 4: the reactor's prior goal satisfactionprobability is about 0:5, and within 10 steps the proba-bility increases to almost 0:8. The reason for this earlyand signi�cant improvement is clear from the probleminstance. There are two dead-ends de�ned by the single\X" in room A. On its way out of the room, the agentcan easily become trapped in the west or south side ofthe \X".When rfs gets the agent past the critical choicepoints that de�ne the entries to these dead-ends, theprobability of goal satisfaction increases dramatically.Of course, once past all dead-ends, the reactor's pol-icy is able to solve the problem, without a plan. Thisis shown by the probability of goal satisfaction reaching1:0 before the planner actually terminates.It is interesting to note the points of greatest variance

in the goal satisfaction probability. In Figure 3, for in-stance, the variance is greatest around 70 planner steps.This is a result of the fact that there are a number of dif-ferent plans that rfs might �nd to move the agent backto room A. Each of these plans takes the agent pastthe two \X"s, but there is some variability in how closethese plans come to the various critical choice points.This gives rise to some variation in the reactor's goalsatisfaction probability that �nally settles down once allplans guide the reactor past all critical choice points.This experiment clearly supports the hypothesis ofsection 4. The results show how pre�x plans releasedincrementally by rfs can help the reactor avoid dead-ends that might otherwise trap its policy.6 Related workSimmons' [1988] \Generate-Test-Debug" technique haspartly inspired our de�nition of rfs. rfs starts with aspeci�cation of the reactor's behavior, reasons about howit may or may not satisfy the goal in a given situation,and \debugs" the behavior as appropriate. There is aclear opportunity here for more sophisticated approachesto debugging than are currently employed by rfs.There are other systems that require a programmerto manually code a prior reactive competence in or-der to avoid or reduce the need for automatic planning.In this regard there is work by Beetz and McDermott[1992], Brooks [1986], Firby [1987], Kaelbling [1988], andGeorge� and Lansky [1987]. Of these, only the system ofBeetz and McDermott includes a planner. This planner,described in detail by McDermott [1992], uses a numberof heuristic transformations that improve a given reac-tive program's goal-achieving properties. We feel thatit should be possible to use rfs in this transformationalplanner, but more work is required to demonstrate this.There are several new architectures for the integrationof plan generation and plan execution. One such archi-tecture, RoboSoar [Laird and Rosenbloom, 1990], usesplanning to resolve execution impasses, and this is simi-lar to our view that planning is used to guide the reactorout of dead-ends de�ned with respect to its policy. Our



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

G
oa

l S
at

is
fa

ct
io

n 
Pr

ob
ab

ili
ty

Planning Steps

Reaction First Search
(RFS errorbars)

Non-Incremental Approach
(NIA errorbars)Figure 4: Problem instance and expected rfs performance.results are quite di�erent, however. rfs can be used in-crementally, since it guarantees monotonic improvement,and no such guarantees exist for the planning componentof RoboSoar. It should be easy to make the planningcomponent of RoboSoar operate according to the threeprinciples of rfs. If so, then RoboSoar should be ableto exhibit the property of monotonic performance im-provement. Lyons and Hendriks [1992] and Godefroidand Kabanza [1992] describe architectures for integrat-ing planning and execution, both of which are concernedwith incremental planning. Since these architectures usea projector{reactor model similar to our own, we hypoth-esize that they can be easily extended to employ rfs.An anytime algorithm [Dean and Boddy, 1988] is onethat can be terminated and restarted at any time, wherethe results computed by the algorithm improve in some\well-behaved manner" as a function of time. rfs isstatistically anytime, in the sense that its expected per-formance satis�es the anytime algorithm requirements.However, the guarantee of monotonic improvement isstronger than that required of an anytime algorithm, andit is this guarantee that makes rfs usefully incremental.Boddy [1991] studies anytime algorithms in more detail.In terms of general-purpose search, George�'s [1983]strategy-�rst search technique could be pro�tably inte-grated with rfs. Strategy-�rst search is a technique thatallows for the use of \heuristic strategies" in search con-trol. Were we to allow a policy to return a set of opera-tor sequences, we would be able to implement George�'sstrategy-�rst search technique as an instance of rfs. Thesame incremental planning result would obtain, with theonly di�erence being the expressive power of the policyas a programming mechanism. This is an excellent areafor further research.Korf's [1990] work on rta* was also motivated by theproblem of limited computation time, based on observeddrawbacks of the a* [Hart, et al., 1968] and ida* [Korf,1985] algorithms. As Korf noted: \a related drawbackof a* and ida* is that they must search all the way toa solution before making a commitment to even the �rstmove in the solution." [Korf, 1990, p. 191]. While rta*is guaranteed to make locally optimal choices, it is not

guaranteed to monotonically improve the performanceof a plan executor. That is, rta* cannot ensure thatthe pre�x plans it produces over time will not adverselyimpact the expected performance of a system that exe-cutes those plans. This is a natural result of the fact thatrta* was not designed to �nd plans for an independentlycompetent reactor. As with the planning component ofRoboSoar, however, it should be relatively easy to im-plement a version of rta* that adheres to the three prin-ciples of rfs. With this done, rta* would also exhibitthe monotonic performance improvement property.7 SummaryReaction-First Search is a general incremental planningalgorithmthat produces partial plans for execution by anindependently competent reactor. The expected perfor-mance of rfs is to monotonically increase the reactor'sgoal satisfaction probability as a function of time spentplanning. To our knowledge, rfs is the �rst planning al-gorithm that guarantees this property. While the prop-erty is statistical, this itself is rather interesting, sincefew average-case guarantees are made regarding plan-ning algorithms. We have empirically supported our hy-pothesis that there can be signi�cant value associatedwith the early release of pre�x plans. Our experimentsdemonstrated that the pre�x plans found by rfs improvethe reactor's performance by helping it avoid dead-endsde�ned with respect to its policy.AcknowledgmentsDiscussions with John Allen, Peter Cheeseman, PhilLaird, and Drew McDermott have been extremely use-ful. We would like to thank Peter Friedland, Rich Keller,Amy Lansky, Nathalie Mathe, Andrew Philpot, DavidThompson, and Richard Washington for helpful com-ments on a draft of this paper. Thanks also to CarlosSalinas for help with the PostScript �gures.



References[Beetz and McDermott, 1992] Beetz, M., McDermott,D. Declarative Goals in Reactive Plans. Proc. ofFirst International Conference on Arti�cial Intelli-gence Planning Systems, pp. 3{12, University of Mary-land, 1992. J. Hendler, ed. Morgan Kaufman.[Boddy, 1991] Boddy, M. Anytime Problem Solving Us-ing Dynamic Programming. Proc of 9th National Con-ference on AI, pp. 738{743, Anaheim, CA, 1991.[Bresina and Drummond, 1990] Bresina, J., and Drum-mond, M. Integrating Planning and Reaction: A Pre-liminary Report. Working Notes of the 1990 AAAISpring Symposium Series, Session on Planning inUncertain, Unpredictable, or Changing Environments.Reprinted as SRC TR 90-45, Systems Research Cen-ter, University of Maryland, 1990. J. Hendler, ed.[Bresina, et al., in press] Bresina, J., Drummond, M.,and Kedar, S. Reactive, Integrated Systems PoseNew Problems for Machine Learning. Machine Learn-ing Methods for Planning, S. Minton, ed. Morgan-Kaufmann, in press.[Brooks, 1986] Brooks, R. A Robust Layered ControlSystem for a Mobile Robot. IEEE Journal of Roboticsand Automation, Vol. 2, No. 1, 1986.[Dean and Boddy, 1988] Dean, T., and Boddy, M. AnAnalysis of Time-Dependent Planning. In Proc. ofAAAI-88, pp. 49{54, St. Paul, MN, 1988.[Drummond, 1989] Drummond, M. Situated ControlRules. Proc. of the First International Conference onPrinciples of Knowledge Representation and Reason-ing, pp. 103{113, Toronto, Canada, 1989.[Drummond, et al., 1991] Drummond, M., Bresina, J.,& Kedar, S. The Entropy Reduction Engine: Inte-grating Planning, Scheduling, and Control. SIGARTbulletin, Vol. 2, No. 4 (August), 1991. ACM Press.[Drummond, et al., 1992] Drummond, M., Levinson,R., Bresina, J., and Swanson, K. Reaction-FirstSearch: Incremental Planning with Guaranteed Per-formance Improvement. NASA Technical Report TR-FIA-92-34, Code FIA, NASA Ames Research Center,Mo�ett Field, CA, 1992.[Drummond, et al., in press] Drummond, M., Swanson,K., and Bresina, J. Robust Scheduling and Executionfor Automatic Telescopes. Heuristic Scheduling Sys-tems, M. Fox & M. Zweben, eds. Morgan-Kaufmann,in press.[Fikes and Nilsson, 1971] Fikes, R., and Nilsson, N.STRIPS: A New Approach to the Application of The-orem Proving to Problem Solving. Arti�cial Intelli-gence Journal, Volume 2, pp. 189{208, 1971.[Firby, J., 1987] Firby, J. An Investigation into ReactivePlanning in Complex Domains. Proc. of AAAI-87, pp.202{206, Seattle, WA, 1987.[George�, 1983] George�, M. Strategies in HeuristicSearch. Arti�cial Intelligence, Number 20, pp. 393{425, 1983.

[George� and Lansky, 1987] George�, M., and Lansky,A. Reactive Reasoning and Planning. Proc. of AAAI-87, pp. 677{682, Seattle, WA, 1987.[Godefroid and Kabanza, 1991] Godefroid, P., and Ka-banza, F. An E�cient Reactive Planner for Synthe-sizing Reactive Plans. Proc. of AAAI-91, Anaheim,CA. pp. 640{645, 1991.[Ginsberg and Harvey, 1990] Ginsberg, M., and Harvey,W. Iterative Broadening. In Proc. of AAAI-90, pp.216{220, Boston, MA, 1990.[Hart, et al., 1968] Hart, P., Nilsson, N., and Raphael,B. A Formal Basis for the Heuristic Determination ofMinimumCost Paths. IEEE Trans. Syst. Sci. Cybern.Vol. 4. pp. 100{107, 1968.[Kaelbling, 1988] Kaelbling, L. Goals as Parallel Pro-gram Speci�cations. Proc. of AAAI-88, pp. 60-65, St.Paul, MN, 1988.[Korf, 1985] Korf, R. Depth-First Iterative Deepening:An Optimal Admissible Tree Search. Arti�cial Intel-ligence, Vol. 27, pp. 97{109, 1985.[Korf, 1990] Korf, R. Real-Time Heuristic Search. Arti-�cial Intelligence, Vol. 42, pp. 189{211, 1990.[Laird and Rosenbloom, 1990] Laird, J. E., and Rosen-bloom, P.S. Integrating Execution, Planning, andLearning in Soar for External Environments. In Proc.of AAAI-90, pp. 1022{1029, Boston, MA, 1990.[Langley, 1992] Langley, P. Systematic and Nonsystem-atic Search Strategies. Proc. of First InternationalConference on Arti�cial Intelligence Planning Sys-tems, pp. 145{152, University of Maryland, 1992. J.Hendler, ed. Morgan Kaufman.[Lyons and Hendriks, 1992] Lyons, D. and Hendriks, A.A Practical Approach to Integrating Reaction and De-liberation. Proc. of First International Conference onArti�cial Intelligence Planning Systems, pp. 153{162,University of Maryland, 1992. J. Hendler, ed. MorganKaufman.[McDermott, 1992] McDermott, D. TransformationalPlanning of Reactive Behavior. Yale University,Department of Computer Science, Technical ReportYALEU/CSD/RR#941, December, 1992.[Minton, et al., 1992] Minton, S., Drummond, M.,Bresina, J., and Philips, A. Total Order vs. PartialOrder Planning: Factors Inuencing Performance. InProc. of the Third International Conference on Prin-ciples of Knowledge Representation and Reasoning.[Philips and Bresina, 1991] Philips, A., & Bresina, J.NASA TileWorld Manual. NASA Technical ReportTR-FIA-91-11, Code FIA, NASA Ames Research Cen-ter, Mo�ett Field, CA, 1992.[Simmons, 1988] Simmons, R. A Theory of DebuggingPlans and Interpretations. Proc. of AAAI-88, pp. 94{99, St. Paul, MN, 1988.
View publication statsView publication stats

https://www.researchgate.net/publication/2847804

