ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2847804
Reaction-First Search

Article - May 2003

Source: CiteSeer

CITATIONS READS
19 50

4 authors, including:

Mark Drummond John Bresina

Apple Inc. ¢ NASA

66 PUBLICATIONS 1,234 CITATIONS 93 PUBLICATIONS 1,773 CITATIONS
SEE PROFILE SEE PROFILE

Rich Levinson
NASA

24 PUBLICATIONS 468 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

roect Intelligent, autonomous systems for space exploration View project

All content following this page was uploaded by John Bresina on 17 February 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2847804_Reaction-First_Search?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2847804_Reaction-First_Search?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Intelligent-autonomous-systems-for-space-exploration?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark_Drummond2?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark_Drummond2?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Apple_Inc?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mark_Drummond2?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John_Bresina?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John_Bresina?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/NASA?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John_Bresina?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rich_Levinson?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rich_Levinson?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/NASA?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Rich_Levinson?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/John_Bresina?enrichId=rgreq-8d7a3ed725c3615fd7a752feff74c378-XXX&enrichSource=Y292ZXJQYWdlOzI4NDc4MDQ7QVM6MTk3OTM5OTY5NDMzNjA1QDE0MjQyMDM5NzQxMjQ%3D&el=1_x_10&_esc=publicationCoverPdf

1JCAI-93, Chambéry, France

Reaction-First Search

Keith Swanson

NASA

Mark Drummond
Sterling Software

Richard Levinson
Recom Technologies

John Bresina
Sterling Software

AT Research Branch, Mail Stop: 269-2
NASA Ames Research Center

Moftett Field, CA

Abstract

This paper presents Reaction-First Search
(RFs), an incremental planning algorithm that
produces plans for execution by a reactive sys-
tem. The reactive system is independently
competent in the sense that it is able to produce
behavior in its environment without a plan.
This reactive system has some prior probability
of satisfying a given goal, and plans found by
RFS serve to increase the probability of goal sat-
isfaction above that prior. RFs is usefully incre-
mental in that any partial plan it produces can
be executed by the reactive system. While any
given partial plan may or may not increase the
reactive system’s goal satisfaction probability,
the expected performance of RFS is to monoton-
ically increase the goal satisfaction probability
as a function of time spent planning.

1 Introduction

Most general-purpose planning algorithms cannot be
used incrementally. Since initial steps in a partial plan
are not necessarily part of a solution, planning algo-
rithms generally do not produce any plan for execu-
tion until a complete plan has been found. Such non-
incremental algorithms fail to address the needs of an
agent that must act before a complete plan is available.

This paper presents a general-purpose planning algo-
rithm that is incremental. The algorithm, Reaction-
First Search (RFs), generates partial plans in service of
a given goal. RFS is used by a situated planner to pro-
vide guidance to an independently competent reactive
system. Without a plan, the reactive system executes a
human-provided program, and by so doing, stands some
chance of producing a behavior that satisfies a given goal.
The partial plans found by RFs help the reactive system
handle difficult situations that were not foreseen by the
programmer. RFS reasons about the reactive system’s
behavior, giving it plans to help satisfy the goal. We
cannot guarantee that the single plan found by RFs af-
ter an arbitrary amount of computation increases the
reactive system’s chances of satisfying the goal. How-
ever, averaged over a number of trials, we can guarantee
that RFS monotonically increases the reactive system’s

94035-1000 USA

goal satisfaction probability as a function of computa-
tion time. Thus, the ezpected performance of RFS is to
monotonically improve the reactive system’s goal sat-
isfaction probability — it is this expected improvement
property that makes RFS usefully incremental.

2 Background

A situated agent often needs to take action within
bounded time. To facilitate this, we suggest that when-
ever possible, a prior reactive competence should be
hand-coded by a programmer. This approach avoids ex-
pensive automatic planning whenever the prior compe-
tence is capable of solving a given problem. Our general
architecture is based on this idea and includes two con-
nected components: a planner and a reactor. For details
see Bresina and Drummond [1990], Drummond, et al.
[1991], and Bresina, et al., [in press].

Bresina and Drummond [1990] introduced the princi-
ple of independent competence to ensure that the reactor
is able to take action with or without a plan. When the
reactor is told to act, it executes the currently available
plan and then falls back on a reactive program defined
by the programmer. If a complete plan is available then
the execution of that plan will cause the reactor to solve
the problem. If absolutely no plan is available then the
reactor executes only the programmer-provided reactive
program. When there is a partial plan available, the
plan takes the reactor part of the way, and the reactive
program takes over at the plan’s end.

These intermediate cases lead to the following prob-
lem. If the reactor executes a partial plan before that
plan is known to lead to a solution, how can we be sure
that this will not impair the reactor’s performance? In-
deed, the entire reason that search is an essential part of
problem-solving is that there is no purely “local” way to
guarantee that any given partial plan can be extended to
a solution. This is the problem that RFS solves. The ex-
pected performance of RFs is to monotonically improve
the goal satisfaction probability of the reactor, no mat-
ter how much time is spent searching. RFS accomplishes
this by reasoning about possible behaviors of the reac-
tor and constraining them as appropriate. RFS can be
used incrementally, releasing partial plans computed in
the time available.

3 Basic definitions

This section defines the terms used throughout the rest
of the paper. Most of these terms are reasonably stan-
dard. The planner is covered first, the reactor second.

The planner

Briefly, a state is a structure that describes a situa-
tion in the application domain. An operator describes
an executable action and is considered enabled in a state
when the action denoted by the operator can be exe-
cuted in the corresponding situation. An operator can
be applied to a state in which it is enabled, producing
a successor state that describes the effects of the action
denoted by the operator. The STRIPS operator language
[Fikes and Nilsson, 1971] is an example of this but is
actually a special case; more general languages are pos-
sible. A trajectoryis a sequence of operator applications,
and any given trajectory models one possible behavior
of the reactor.

A search tree is a tree of trajectories rooted at a com-
mon state. A level in a search tree is a set of states
that are the same distance from the root. A goal is a
function! that maps a trajectory into the set {t, f}. If
the goal function returns ¢ for a given trajectory, then
the trajectory satisfies the goal. A problem is a specific
initial state, a set of operators (defined in terms of oper-
ator enablement and application functions), and a goal.

A prefiz partial plan (or just prefiz plan) for a given
problem is a trajectory constructed from the problem’s
operators, rooted in the problem’s initial state. Such a
plan is a “prefix” since it specifies the first few actions in
a trajectory which may or may not lead to the eventual
satisfaction of the problem’s goal. A solution plan for a
given problem is a trajectory that satisfies the goal.

The reactor

A policy is a function that maps a state into a set of
enabled operators and is provided by a programmer to
specify how the reactor should behave in a given set of
situations. Thus, a policy defines a prior reactive com-
petence for the reactor. For each possible state S and for
a given policy po, if |po(S)| < 1, we say that the pol-
icy is deterministic; otherwise, if there exists a possible
state S for which | po(S)| > 1, we say that the policy is
nondeterministic. Since a policy is used to define the re-
actor’s prior competence, it is largely counterproductive
to allow the policy to encode a general purpose problem
solving mechanism (a planner, for instance). Thus, we
insist that any given policy be computable within time
and space that are bounded by constants.

A policy is executed by the reactor as follows. First,
a state S is created to describe the agent’s current
situation. Next, the policy is evaluated on S, pro-
ducing a disjunctive set of recommended operators,
{01,05,...,0,}. If this set is empty then the reactor
halts. Otherwise, one particular O; is randomly selected
and executed.

In terms of the planner’s search space, the subtree
defined by the policy from a state S is the tree rooted

'We disallow goal functions that permit the growth of
infinite length trajectories.

at S defined by recursive application of all policy-
recommended operators. Thus, the states reachable
from S under the policy are a subset of all possible states
reachable from S. A policy state is simply a state for
which the policy returns a non-empty set of operators.

We measure the reactor’s prior competence for a given
problem instance as the probability that the reactor can
satisfy the goal using only the programmer-defined pol-
icy. This probability can be explicitly measured, for ex-
ample, by repeatedly placing the reactor in the problem’s
initial state and allowing it to attempt to satisfy the goal
by executing its policy. The number of samples required
to obtain high statistical confidence is a function of the
nondeterminism in the policy. If the policy is determin-
istic then a single run suffices. If there is a large degree
of nondeterminism in the policy, then a large number of
runs might be required.

The plan execution model of the reactor is as follows.
At each point in time there is a prefix plan defined by
the trajectory that terminates in the planner’s “current”
search state. If the reactor is told to act, it first executes
this prefix plan and then executes its policy until the goal
is satisfied or until the policy returns the empty set. If
the current prefix plan causes the reactor to produce a
behavior that satisfies the goal, then the policy is not
executed. If the current prefix plan is null, then the
policy is executed immediately.

This paper makes some assumptions regarding the ex-
ecution environment. We assume that no errors occur
during plan execution, and we also assume that sens-
ing is free and provides enough information to define a
search tree that includes a solution (if one exists). These
assumptions merely simplify the discussion; they are eas-
ily relaxed, but space precludes a detailed discussion.
Finally, note that RFS does not address the question of
how long to plan — it simply uses whatever computation
time is available.

4 The problem and a solution

Assume that a timer, ¢, is started when a problem is pre-
sented to the planner and reactor. At ¢t = 0, the reactor
can be told to run and, by executing its policy, stands
some chance of solving the problem. If the reactor were
to sit idle until the planner released a prefix plan for exe-
cution at ¢t = 1, how would the reactor’s performance be
affected? Again, what if the reactor were to sit idle until
the planner released a prefix plan at ¢ = 27 RFs guaran-
tees that whenever the planner is stopped, ¢t = 1,2, 3,.. .,
the expected performance of the reactor is never worse
than its performance at ¢ = 0. Indeed, as we show below,
the reactor’s performance can be significantly improved.

The three principles of Reaction-First Search

RFS is a randomized search algorithm that requires the
planner to first reason about what the reactor would do
without a plan. RFS uses the policy to define a search-
space bias, exploring the policy-defined subtree before
any other part of the search space is examined. The
policy defines a set of possible reactor behaviors. The
planner, guided by the policy, searches through the set

of trajectories that model those behaviors, looking for
one that satisfies the given goal.

There are three principles that differentiate RFs from
traditional state-space search. These principles, together
with a definition of state-space search, constitute a defi-
nition of RFs. The three principles of RFS are:

1. All states in the policy-defined subtree must be ex-
panded before all other states in the search space;

2. After selecting a level in the search tree by any
means, a policy state in that level must be randomly
chosen for expansion;

3. In any given policy state, policy-recommended op-
erators must be randomly chosen for application.

These three principles are all that is required by RFs;
any state-space search procedure that follows them faith-
fully implements our algorithm and consequently has
expected performance that guarantees monotonic im-
provement of the reactor’s goal satisfaction probability.
The proof of monotonic improvement [Drummond, et
al., 1992] hinges on the observation that the probabil-
ity of goal satisfaction at each level of the policy-defined
subtree is the same. RFs samples from these levels in
a randomized manner, and this ensures that the proba-
bility of goal satisfaction obtained at each point in time
is, on average, always greater or equal to that obtained
by the policy at time zero.? The incrementality of RFS
comes from the fact that it can be stopped whenever it
is about to expand a state: the trajectory that connects
the root to this current state defines a plan that can be
executed by the reactor.

The three principles of RFs are not as restrictive as
they might first appear. In fact, it is easy to implement
RFS so that it explores the policy subtree in a variety of
ways. We have experimented with standard depth-first
and breadth-first search, as well as iterative sampling
[Minton, et al., 1992; Langley, 1992]. Other implemen-
tations are also possible; for instance, iterative deepen-
ing [Korf, 1985] and iterative broadening [Ginsberg and
Harvey, 1990]. One need only bias the search according
to the three principles of RFS.

Completeness and monotonic improvement

RFs first explores the subtree defined by the policy,
starting with the root state. If the search strategy used
for this exploration is complete (for instance, depth-first
search with chronological backtracking), and if a solution
exists in this subtree, RFs will find it. If a non-systematic
search strategy such as iterative sampling is used then
RFS is only asymptotically complete. In essence, with
respect to the policy subtree, RFs is only as complete as
the underlying search strategy.

If RFs discovers that there is no solution in the policy
subtree, it selects an arbitrary open state and applies an
arbitrary enabled operator, creating a new search state.
The choice of which particular open state and enabled

2Please note that RFs does not actually calculate the pol-
icy’s goal satisfaction probability. The monotonic improve-
ment property is an objective statement about RFs: the al-
gorithm exhibits expected monotonic improvement without
having to explicitly calculate any probabilities.

operator to choose is not dictated by RFs; the algorithm
works no matter how the state and operator are chosen.
The only requirement, and this is important, is that the
subtree rooted at the new state must now be explored in
the manner dictated by RFS. By repeatedly generating
new open states in this manner, RFs is clearly complete,
again assuming that a complete search strategy is used
to explore each policy-defined subtree.

Our hypothesis regarding Reaction-First Search

While RFs can be expected to monotonically improve
the performance of the reactor, there is clearly a sim-
pler approach: don’t let the planner release prefix plans!
With the principle of independent competence, the reac-
tor’s goal satisfaction probability would hold steady at
the point determined by its policy until sufficient time
had elapsed to allow a complete solution to be found.
We call this alternate approach non-incremental, since
it does not issue preliminary advice to the reactor.

We hypothesize that RFS’ release of prefix plans can
have an advantage over the non-incremental approach.
Specifically, we hypothesize that the partial plans found
by RFS can help the reactor avoid dead-ends that might
otherwise trap its policy. A dead-end for the policy is
a state for which the policy returns the empty set and
which fails to satisfy the goal. A eritical choice point
[Drummond, 1989] is a state from which there is an ac-
tion that leads to possible success and from which there
is also an action that leads to necessary failure. In the
context of RFs, a critical choice point is a state from
which the probability of goal satisfaction (under the pol-
icy) is non-zero, but from which there exists a policy-
recommended action that leads to a state from which
the goal satisfaction probability is zero. We hypothesize
that RFs can have an advantage over the non-incremental
approach since its prefix plans can provide guidance to
the reactor at these critical choice points and thus help
the reactor avoid dead-ends during execution.

Figure 1 sketches our hypothesis regarding the general
relationship between the non-incremental approach and
RFS. Assume that the reactor’s prior probability of goal
satisfaction is P. Thus, at time 0, there is a probabil-
ity, P, that the reactor will satisfy the given goal. The
non-incremental approach ensures that the reactor’s goal
satisfaction probability holds steady at P until the ear-
liest time at which a solution is found. This point is
indicated on the computation time axis by “ES” (ear-
liest solution). The average performance of the reactor
will then increase until it reaches a maximum at the
planner’s latest solution (“LS”) time, at which point the
planner always has a solution, if one exists. The precise
rate at which the reactor’s average performance increases
between ES and LS is a function of the search strategy
and the search space.

The important aspect of our hypothesis is the per-
formance difference it predicts. The reactor’s perfor-
mance profile under RFs initially tracks that of the non-
incremental approach, starting with a value of P at time
0. Whenever RFs identifies a critical choice point, the
expected goal satisfaction probability should increase
(there are two such increases sketched in the figure). The

1y AT G
RFS |
Expected
Goal
Satisfa(-;t-ion P PR A .
Probability Non-Incremental Approach
| |

0 I I
Computation Time gg LS
—

Figure 1: Hypothesis: Non-Incremental vs RFS.

precise size and shape of the difference is again a func-
tion of the underlying search strategy and search space.
It is important to note, however, that the expected per-
formance of RFS is never worse than that obtained by the
non-incremental approach and, according to our hypoth-
esis, can sometimes be significantly better. The next
section experimentally explores this hypothesis.

5 Empirical results

We have implemented RFS on a telescope scheduling
problem [Drummond, et al., in press], where the reactive
policy is defined by a dispatch scheduler written by the
company that builds the telescope controller. While we
have a working version of RFS for this scheduling prob-
lem, we have not yet defined and carried out any exper-
iments. Thus, in this paper, we present the results from
a detailed study of RFs at work in a simulated domain,
the NASA TileWorld [Philips and Bresina, 1991]. The
goal of the experiment reported here is to evaluate the
hypothesis outlined in the previous section.

The problem class for this experiment is couched in
terms of a two-dimensional grid of cells. The task is to
retrieve a tile from one room, B, and to carry it back to
a particular location in another room, A. As shown in
Figure 2, room A occupies the lower left portion of the
grid and room B occupies the upper right portion. The
goal is satisfied if the agent, while grasping the tile, is
in the lower-left corner cell of room A. Different prob-
lem instances in this class vary in terms of the obsta-
cles present in the rooms and between the rooms. For all
problem instances considered, the agent is initially in the
lower-left corner of room A and the tile to be retrieved
is initially in the top-right corner of room B. The fig-
ure shows this common problem structure, illustrating
all prior information available to the (human) designer
of the reactor’s policy.

The policy we devised for these experiments is a simple
hill-climber that uses a traditional Manhattan distance
calculation. The policy operates in three stages: first,
move the agent from room A to room Bj; second, grasp
the tile; third, move the agent back. The movement from
room A to room B is itself implemented in three stages:
first, move the agent from its initial location to one of the
doors of room A; second, move the agent to one of the
doors of room B; third, move the agent next to the tile.
Any one of these subtrips can be halted by entrapment in
a dead-end, since the policy uses Manhattan distance to

RFS Exp: Transportation Problem

Figure 2: All prior information.

suggest moves, and while this calculation provides useful
guidance, it is not guaranteed to find a solution. The
policy returns all moves suggested by the Manhattan
distance calculation and hence is nondeterministic. Once
the agent has grasped the tile, the return trip is also
implemented in three stages. As for the outward journey,
each of these stages can be halted by entrapment in a
dead-end. Since the policy is not capable of physically
backtracking there is no guarantee that it will solve the
problem. Even so, it works well for many problems and
satisfies the requirement of computability in time and
space that are bounded by constants.

The dependent variable for this experiment is reactor
performance, measured as goal satisfaction probability,
and the independent variable is planning time. Intu-
itively, planning time should be measured in some metric
units; however, since we carried out this experiment in
Common Lisp, running on a Unix system, elapsed time
is only weakly correlated with the amount of time actu-
ally spent planning. To overcome this, we observed that
the time spent by the planner applying an operator to a
state can be bounded by a constant. This is true since
the evaluation of the policy takes constant time, as do all
other operations involved with expanding a single state.
While the precise value of this constant depends on a va-
riety of factors, the important aspect is that a bounded
amount of time is spent applying an operator to a state.
We use the term step to refer to such an operator appli-
cation. Thus, instead of measuring actual metric time
we measure the number of planner steps taken.

To facilitate data collection, we designed an algorithm
for calculating the probability that the policy will lead
the agent into a dead-end. The procedure accepts an
initial and goal location and returns the probability that
the agent will become trapped in a dead-end via the
execution of the policy. This procedure allows us to de-
termine the probability of goal satisfaction without ex-
plicitly executing the policy.

Figures 3 and 4 show some of our results, and more
results are reported in Drummond, et al., [1992]. The left
side of each figure shows a particular problem instance,
and the right side shows the reactor’s goal satisfaction
probability as a function of planning steps. We used a

RFS Exp: Transportation Problem

T T
[[

0.9 |

0.7
06
05
04r
03r
0.2r
0.1r

- .

Goal Satisfaction Probability

sl o

e e T At Sl

Reaction First Search— -
(RFS errorbars)—<—
Non-Incremental Approach -
(NIA errorbars) ——

20 40 60 80 100 120
Planning Steps

Figure 3: Problem instance and expected RFsS performance.

depth-first chronological backtracking version of RFS for
these experiments. Since the policy is nondeterministic,
we ran RFs 500 times on each problem instance, and the
graphs in each figure show the mean probability value
obtained together with errorbars characterizing the 95%
confidence interval.

Each problem instance is consistent with the prior in-
formation available to the programmer (Figure 2), but
each adds some number of obstacles. Obstacles have the
general shape of an “X” and are located either in the
rooms or between the rooms. The arms of these “X”s
define dead-ends that can trap the hill-climbing policy,
and this is where planning can help provide guidance.
Note, had this information been available in advance,
we might have been able to formulate a better policy.

The graph in each figure shows the reactor’s goal sat-
isfaction probability under RFs and the same measure
for the non-incremental approach discussed in section 4.
Since the non-incremental approach only releases com-
plete plans for execution, the reactor’s performance re-
mains at the level defined by the policy until the plan-
ner terminates. As we predicted, there is some varia-
tion between the earliest and latest times at which the
planner terminates. More importantly, our prediction
of a performance difference between RFs and the non-
incremental approach is clearly demonstrated by these
experimental results.

Consider Figure 4: the reactor’s prior goal satisfaction
probability is about 0.5, and within 10 steps the proba-
bility increases to almost 0.8. The reason for this early
and significant improvement is clear from the problem
instance. There are two dead-ends defined by the single
“X” in room A. On its way out of the room, the agent
can easily become trapped in the west or south side of
the “X”. When RFS gets the agent past the critical choice
points that define the entries to these dead-ends, the
probability of goal satisfaction increases dramatically.
Of course, once past all dead-ends, the reactor’s pol-
icy is able to solve the problem, without a plan. This
is shown by the probability of goal satisfaction reaching
1.0 before the planner actually terminates.

It is interesting to note the points of greatest variance

in the goal satisfaction probability. In Figure 3, for in-
stance, the variance is greatest around 70 planner steps.
This is a result of the fact that there are a number of dif-
ferent plans that RFS might find to move the agent back
to room A. Each of these plans takes the agent past
the two “X”s, but there is some variability in how close
these plans come to the various critical choice points.
This gives rise to some variation in the reactor’s goal
satisfaction probability that finally settles down once all
plans guide the reactor past all critical choice points.

This experiment clearly supports the hypothesis of
section 4. The results show how prefix plans released
incrementally by RFs can help the reactor avoid dead-
ends that might otherwise trap its policy.

6 Related work

Simmons’ [1988] “Generate-Test-Debug” technique has
partly inspired our definition of RFS. RFS starts with a
specification of the reactor’s behavior, reasons about how
it may or may not satisfy the goal in a given situation,
and “debugs” the behavior as appropriate. There is a
clear opportunity here for more sophisticated approaches
to debugging than are currently employed by RFS.
There are other systems that require a programmer
to manually code a prior reactive competence in or-
der to avoid or reduce the need for automatic planning.
In this regard there is work by Beetz and McDermott
[1992], Brooks [1986], Firby [1987], Kaelbling [1988], and
Georgefl and Lansky [1987]. Of these, only the system of
Beetz and McDermott includes a planner. This planner,
described in detail by McDermott [1992], uses a number
of heuristic transformations that improve a given reac-
tive program’s goal-achieving properties. We feel that
it should be possible to use RFs in this transformational
planner, but more work is required to demonstrate this.
There are several new architectures for the integration
of plan generation and plan execution. One such archi-
tecture, RoboSoar [Laird and Rosenbloom, 1990], uses
planning to resolve execution impasses, and this is simi-
lar to our view that planning is used to guide the reactor
out of dead-ends defined with respect to its policy. Our

RFS Exp: Transportation Problem

0.7
06
0.5
04 r
03 r
02 r
01r

Goal Satisfaction Probability

A e S T g

Reaction First Search —— -
(RFSerrorbars) ——
Non-Incremental Approach -
(NIA errorbars) ——

20 40 60 80 100 120
Planning Steps

Figure 4: Problem instance and expected RFsS performance.

results are quite different, however. RFs can be used in-
crementally, since it guarantees monotonic improvement,
and no such guarantees exist for the planning component
of RoboSoar. It should be easy to make the planning
component of RoboSoar operate according to the three
principles of RFs. If so, then RoboSoar should be able
to exhibit the property of monotonic performance im-
provement. Lyons and Hendriks [1992] and Godefroid
and Kabanza [1992] describe architectures for integrat-
ing planning and execution, both of which are concerned
with incremental planning. Since these architectures use
a projector—reactor model similar to our own, we hypoth-
esize that they can be easily extended to employ RFS.

An anylime algorithm [Dean and Boddy, 1988] is one
that can be terminated and restarted at any time, where
the results computed by the algorithm improve in some
“well-behaved manner” as a function of time. RFS is
statistically anytime, in the sense that its expected per-
formance satisfies the anytime algorithm requirements.
However, the guarantee of monotonic improvement is
stronger than that required of an anytime algorithm, and
it is this guarantee that makes RFs usefully incremental.
Boddy [1991] studies anytime algorithms in more detail.

In terms of general-purpose search, Georgefl’s [1983]
strategy-first search technique could be profitably inte-
grated with RFS. Strategy-first search is a technique that
allows for the use of “heuristic strategies” in search con-
trol. Were we to allow a policy to return a set of opera-
tor sequences, we would be able to implement Georgeff’s
strategy-first search technique as an instance of RFS. The
same incremental planning result would obtain, with the
only difference being the expressive power of the policy
as a programming mechanism. This is an excellent area
for further research.

Korf’s [1990] work on RTA* was also motivated by the
problem of limited computation time, based on observed
drawbacks of the A* [Hart, et al., 1968] and 1DA* [Korf,
1985] algorithms. As Korf noted: “a related drawback
of A* and IDA™ is that they must search all the way to
a solution before making a commitment to even the first
move in the solution.” [Korf, 1990, p. 191]. While rTa*
1s guaranteed to make locally optimal choices, it is not

guaranteed to monotonically improve the performance
of a plan executor. That is, RTA* cannot ensure that
the prefix plans it produces over time will not adversely
impact the expected performance of a system that exe-
cutes those plans. This is a natural result of the fact that
RTA™ was not designed to find plans for an independently
competent reactor. As with the planning component of
RoboSoar, however, it should be relatively easy to im-
plement a version of RTA* that adheres to the three prin-
ciples of RFS. With this done, RTA* would also exhibit
the monotonic performance improvement property.

7 Summary

Reaction-First Search is a general incremental planning
algorithm that produces partial plans for execution by an
independently competent reactor. The expected perfor-
mance of RFS is to monotonically increase the reactor’s
goal satisfaction probability as a function of time spent
planning. To our knowledge, RFS is the first planning al-
gorithm that guarantees this property. While the prop-
erty is statistical, this itself is rather interesting, since
few average-case guarantees are made regarding plan-
ning algorithms. We have empirically supported our hy-
pothesis that there can be significant value associated
with the early release of prefix plans. Our experiments
demonstrated that the prefix plans found by RFs improve
the reactor’s performance by helping it avoid dead-ends
defined with respect to its policy.

Acknowledgments

Discussions with John Allen, Peter Cheeseman, Phil
Laird, and Drew McDermott have been extremely use-
ful. We would like to thank Peter Friedland, Rich Keller,
Amy Lansky, Nathalie Mathe, Andrew Philpot, David
Thompson, and Richard Washington for helpful com-
ments on a draft of this paper. Thanks also to Carlos
Salinas for help with the PostScript figures.

References

[Beetz and McDermott, 1992] Beetz, M., McDermott,
D. Declarative Goals in Reactive Plans. Proc. of
First International Conference on Artificial Intelli-
gence Planning Systems, pp. 3—12, University of Mary-
land, 1992. J. Hendler, ed. Morgan Kaufman.

[Boddy, 1991] Boddy, M. Anytime Problem Solving Us-
g

ing Dynamic Programming. Proc of 9th National Con-
ference on Al pp. 738-743, Anaheim, CA, 1991.

[Bresina and Drummond, 1990] Bresina, J., and Drum-
mond, M. Integrating Planning and Reaction: A Pre-
liminary Report. Working Notes of the 1990 AAAI
Spring Sympostum Series, Sesston on Planning n
Uncertain, Unpredictable, or Changing Environments.
Reprinted as SRC TR 90-45, Systems Research Cen-
ter, University of Maryland, 1990. J. Hendler, ed.

[Bresina, et al., in press) Bresina, J., Drummond, M.,
and Kedar, S. Reactive, Integrated Systems Pose
New Problems for Machine Learning. Machine Learn-
g Methods for Planning, S. Minton, ed. Morgan-
Kaufmann, in press.

[Brooks, 1986] Brooks, R. A Robust Layered Control
System for a Mobile Robot. IEEE Journal of Robotics
and Automation, Vol. 2, No. 1, 1986.

[Dean and Boddy, 1988] Dean, T., and Boddy, M. An
Analysis of Time-Dependent Planning. In Proc. of
AAAI-88, pp. 49-54, St. Paul, MN, 1988.

[Drummond, 1989] Drummond, M. Situated Control
Rules. Proc. of the First International Conference on
Principles of Knowledge Representation and Reason-
g, pp. 103-113, Toronto, Canada, 1989.

[Drummond, et al., 1991] Drummond, M., Bresina, J.,
& Kedar, S. The Entropy Reduction Engine: Inte-
grating Planning, Scheduling, and Control. SIGART
bulletin, Vol. 2, No. 4 (August), 1991. ACM Press.

[Drummond, et al., 1992] Drummond, M., Levinson,
R., Bresina, J., and Swanson, K. Reaction-First
Search: Incremental Planning with Guaranteed Per-
formance Improvement. NASA Technical Report TR-
FIA-92-34, Code FIA, NASA Ames Research Center,
Moffett Field, CA, 1992.

[Drummond, et al., in press) Drummond, M., Swanson,
K., and Bresina, J. Robust Scheduling and Execution
for Automatic Telescopes. Heuristic Scheduling Sys-
tems, M. Fox & M. Zweben, eds. Morgan-Kaufmann,
m press.

[Fikes and Nilsson, 1971] Fikes, R., and Nilsson, N.
STRIPS: A New Approach to the Application of The-
orem Proving to Problem Solving. Artificial Intelli-
gence Journal, Volume 2, pp. 189-208, 1971.

[Firby, J., 1987] Firby, J. An Investigation into Reactive
Planning in Complex Domains. Proc. of AAAI-87, pp.
202-206, Seattle, WA, 1987.

[Georgeff, 1983] Georgeff, M. Strategies in Heuristic
Search. Artificial Intelligence, Number 20, pp. 393—
425, 1983.

[Georgeff and Lansky, 1987] Georgeff, M., and Lansky,
A. Reactive Reasoning and Planning. Proc. of AAAI-
87, pp. 677682, Seattle, WA, 1987.

[Godefroid and Kabanza, 1991] Godefroid, P., and Ka-
banza, F. An Efficient Reactive Planner for Synthe-
sizing Reactive Plans. Proc. of AAAI-91, Anaheim,
CA. pp. 640-645, 1991.

[Ginsberg and Harvey, 1990] Ginsberg, M., and Harvey,
W. TIterative Broadening. In Proc. of AAAI-90, pp.
216-220, Boston, MA, 1990.

[Hart, et al., 1968] Hart, P., Nilsson, N., and Raphael,
B. A Formal Basis for the Heuristic Determination of
Minimum Cost Paths. IEEE Trans. Syst. Sci. Cybern.
Vol. 4. pp. 100-107, 1968.

[Kaelbling, 1988] Kaelbling, L. Goals as Parallel Pro-
gram Specifications. Proc. of AAAI-88, pp. 60-65, St.
Paul, MN, 1988.

[Korf, 1985] Korf, R. Depth-First Iterative Deepening:
An Optimal Admissible Tree Search. Artificial Intel-
ligence, Vol. 27, pp. 97-109, 1985.

[Korf, 1990] Korf, R. Real-Time Heuristic Search. Arti-
ficial Intelligence, Vol. 42, pp. 189-211, 1990.

[Laird and Rosenbloom, 1990] Laird, J. E., and Rosen-
bloom, P.S. Integrating Execution, Planning, and
Learning in Soar for External Environments. In Proc.
of AAAI-90, pp. 1022-1029, Boston, MA, 1990.

[Langley, 1992] Langley, P. Systematic and Nonsystem-
atic Search Strategies. Proc. of First International
Conference on Artificial Intelligence Planning Sys-
tems, pp. 145—152, University of Maryland, 1992. J.
Hendler, ed. Morgan Kaufman.

[Lyons and Hendriks, 1992] Lyons, D. and Hendriks, A.
A Practical Approach to Integrating Reaction and De-
liberation. Proc. of First International Conference on
Artificial Intelligence Planning Systems, pp. 153—-162,
University of Maryland, 1992. J. Hendler, ed. Morgan
Kaufman.

[McDermott, 1992] McDermott, D. Transformational
Planning of Reactive Behavior. Yale University,
Department of Computer Science, Technical Report
YALEU/CSD/RR#941, December, 1992.

[Minton, et al., 1992] Minton, S., Drummond, M.,
Bresina, J., and Philips, A. Total Order wvs. Partial
Order Planning: Factors Influencing Performance. In
Proc. of the Third International Conference on Prin-
ciples of Knowledge Representation and Reasoning.

[Philips and Bresina, 1991] Philips, A., & Bresina, J.
NASA TileWorld Manual. NASA Technical Report
TR-FIA-91-11, Code FIA, NASA Ames Research Cen-
ter, Moffett Field, CA, 1992.

[Simmons, 1988] Simmons, R. A Theory of Debugging
Plans and Interpretations. Proc. of AAAI-88, pp. 94—
99, St. Paul, MN, 1988.

https://www.researchgate.net/publication/2847804

