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Introduction

This paper presents a theory of autonomous action
that combines the perspectives of three disciplines:
neuropsychology, AI planning, and control system
technology. Each discipline brings complementary con-
tributions to the commongoal of understanding the na-
ture of autonomous action, and the combined theory
requires extensions to each of the component theories.
Our overall goal is to: Extend AI planning methods to
perform the functions of the neuropsychological mod-
els within the context of real-time, closed-loop control
applications.

The model presented in this paper provides a map-
ping between the theories that supports the further
interdisciplinary exchange of ideas. Related interdisci-
plinary e�orts have been discussed by Levinson[13, 14,
15] and by Spector, Grafman, and Hendler [21, 8, 9].

We begin by considering humans as the \gold stan-
dard" for autonomous systems. Human autonomy
requires the integration of default and deliberate be-
havior. Default behavior is e�ective in routine situa-
tions, but it often must be deliberately modi�ed for
use in novel situations. The default programs are well-
learned, automatic reactions that are driven by the
presence of strong sensory data. In contrast, the delib-
erate programs are unlearned, novel responses that are
driven by goals in the absence of strong sensory stimuli.
The 
exibility to deliberately modify default behavior
allows humans to function in novel conditions. People
with frontal lobe damage often have di�culty modify-
ing default behavior in novel conditions and therefore
have di�culty living socially-independent lives. They
often respond mechanically to immediate sensory stim-
uli without regard to the e�ects of their actions. These
patients can score well on IQ tests, but have di�culties
planning and executing daily activities for shopping,
cooking, washing and business.

We propose that runtime deliberation is required for
autonomous control systems to perform successfully in
novel operating conditions. We de�ne the term de-
liberation to mean a time-consuming decision making
process that considers the future. The word delibera-
tion comes from the term \de libra", which means from
weight or measurement. Thus, a deliberate choice is
a measured selection, where the choices are measured
against a set of goals. Without deliberation, modern

control systems are also data-driven and reactive, much
like frontal lobe patients.
At NASA, we are developing autonomous instru-

ments and spacecraft that require the 
exibility of
humans to operate in unpredictable conditions. We
are currently developing a bioreactor instrument that
maintains the environmental conditions for a vessel
that grows bacteria. The system uses 16 sensors in-
cluding temperature, pH, and light levels, and it uses
16 e�ectors to control the heat, light, and nutrients.
The experiments can run 24 hours a day for 2 weeks,
so humans cannot be present at all times. Our pri-
mary control programs involve maintaining and chang-
ing setpoints, recalibrating the sensors during an ex-
periment, and diagnosing and recovering from hard-
ware failures. We are also applying the model towards
a cognitive rehabilitation tool for the assessment and
treatment of frontal lobe damage. This healthcare ap-
plication uses our model to simulate the generation,
evaluation, and execution of daily plans for indepen-
dent living.
Although the term autonomous is widely used, it

has no formal de�nition and is often confused with the
term automatic. It is di�cult to develop and evaluate
autonomous systems without a solid de�nition of the
term \autonomous".
We have adopted a de�nition motivated by the clin-

ical evaluation of brain injury patients: Autonomy is
a measure of a system's dependence on external assis-
tance for achieving its goals. This is the essential met-
ric for determining whether a patient can take care
of themselves and live independently after traumatic
brain injury. Since no person or thing can maintain
absolute independence, autonomy must be measured
relative to a set of goals and operating conditions. As
the goals and conditions become varied and complex,
and involve resource constraints, then independence
becomes more di�cult. An autonomous system with
multiple goals, resource con
icts, and potential hard-
ware failure requires an ability to detect and correct
its own errors. Autonomy is also a multidimensional
property rather than a true or false proposition. When
assessing the e�ects of traumatic brain injury, human
autonomy is often described along dimensions that in-
clude the frequency that assistance is required, the con-
ditions that cause assistance to be required, and the
amount of assistance required[16].



We propose that autonomous machines be held ac-
countable to standards in the same dimensions as hu-
mans. To be con�dent that our instrument can be left
on its own, it should meet similar performance stan-
dards as would be applied to a human instrument op-
erator. Thus, our model is based on the dimensions
used for the clinical evaluation of human autonomy.

Neuropsychological models

A pioneer in neuropsychology, A. R. Luria, described
the frontal lobes as \a system specialized for program-
ming, regulation and veri�cation of activity"[17]. Fol-
lowing this description, our model de�nes an \on-line
programmer" that monitors the interactions between
the external environment and the default programs.
When this programmer predicts that a default program
might produce an error, or if an unpredicted error ac-
tually occurs, it modi�es the default program in order
to handle the error. A program is a sequence of actions.
Based on the neuropsychological theories [20, 16,

19, 9], we have identi�ed three types of errors that
can occur with default programs. These errors are
called irrelevant, ineffective, and interfering

programs. The neuropsychological models have also
led us to identify six types of program modi�cation
that are required for human autonomy. A person must
have the ability to inhibit, start, stop, continue,

choose, and reorder inappropriate routines. These
concepts are central elements in our model, and we will
return to them later in the paper. See [14] for more
detail on the connection to frontal lobe models.
In general, the frontal lobe models provide insight

and data about human autonomy. They show that
well learned, automatic reactions are not su�cient
for autonomy (i.e., social independence). The mod-
els also contributed to our understanding that au-
tonomous systems should be evaluated in terms of their
functional independence. Neuropsychology also indi-
cates that the brain uses many parallel feedback loops
(sense-act circuits), instead of the segregated sensing
and acting modules that are found in many AI sys-
tems. This implies that there is no centralized record
of the sensory state.
The major limitation of the models is that they are

informal verbal descriptions. Unfortunately, the neu-
ropsychological models provide few details about in-
formation processing issues. In order to implement our
theory and actually build autonomous instruments, we
need to develop a computer model of the informal ver-
bal descriptions.

Control system technology

Control system technology contributes well de�ned
feedback control algorithms, such as PID and \bang-
bang" methods [1], that can be used as default con-
trol programs. Adaptive and learning methods are
also provided that can be used to improve the default
programs with experience. Additionally, the control
system methods emphasize the importance and use of
mathematical models of physical processes. This per-
spective also suggests that encoding real-world control

actions requires a more expressive action representa-
tion than is found in most AI systems. Complex real-
time control software typically relies on the expressive-
ness of general programming constructs for hierarchical
decomposition, conditional and iterative control, and
variable assignment.
The major limitation of this technology is that con-

trol programs always cover a only subset of the pos-
sible operating conditions. This is due to a �nite
limit on the e�ort spent tuning, calibrating, model-
ing and programming the system. Due to reliance on
extensive and expensive laboratory testing and tun-
ing, most control systems are designed to operate only
within a speci�c range of operating ranges. Assump-
tions about the unlikelihood of some operating condi-
tions also place limits on the operating range. Conse-
quently, most autonomous controllers will eventually
face unexpected conditions that result in unstable be-
havior. When such a program error occurs, the control
system may produce an error message, or its behavior
may be unde�ned or dangerous. Autonomy requires a
graceful degradation of behavior when faced with un-
programmed operating conditions.
A planner can extend the operating range of a de-

terministic controller by searching for and generating
novel responses to novel operating conditions. This re-
quires the integration of feedback control methods that
take actions based on observed errors, with feedforward
methods that take actions based on predicted errors.
Planners provide search-based feedforward control by
predicting program errors before they happen [4]. This
type of feedforward function can been seen in Figure
1 (see next section), where the planner is labeled as
the program simulator. Adding a planning compo-
nent to a control system requires extending the control
system's action representation to facilitate deliberation
and search. Our approach is to extend a general pro-
gramming language to include nondeterministic choice
points and the ability to predict (simulate) the e�ects
of actions. We present this method in the next section.

AI planning methods

AI provides a variety of contributions to our the-
ory ranging from general planning and reaction ar-
chitectures to speci�c search algorithms. Our model
is related to previous situated planning systems such
as ere[2], RoboSoar[11], xfrm[18], and propel[15].
Other relevant AI methods that are outside the scope
of this paper's technical focus on planning methods in-
clude fault diagnosis systems for reasoning about hard-
ware and model failures, and learning systems for im-
proving routine programs with experience.
Autonomy requires both reactive and planning com-

ponents, and they must be well integrated. Unfortu-
nately, it is di�cult to �nd such integrated systems.
Typically, planning systems require too many simplify-
ing assumptions such as a static external environment,
omniscient perception, unlimited planning time, and
no exogenous events or variant outcomes. On the other
hand, reactive models like PRS[7] are more practical
because they are connected to real sensors and e�ectors
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and can respond to external changes within guaran-
teed time limits. They exhibit insect level behavior us-
ing pre-programmed, circuit-like programs. However,
these reactive systems cannot simulate, evaluate and
modify their pre-programmed behavior. Thus they be-
have much like persons with frontal lobe damage.

There are many di�culties with trying to embed a
planner within real-time closed-loop control software.
A major source of di�culty is the fact that planning
and control systems use di�erent action representa-
tions. We call this the language barrier. While con-
trol systems are usually encoded in a general program-
ming language, AI planning systems require special-
ized knowledge about unconventional action represen-
tations that do not use standard programming con-
structs for hierarchical decomposition, conditional and
iterative control, and variable assignment. Another
di�erence is that the real-time control programs de-
terministically select a single course of action, whereas
the planning systems search through a space of many
courses of actions. This language barrier makes it dif-
�cult to develop a tight integration between the plan-
ning and control modules by making it harder for the
planner to understand and recover from errors that oc-
cur in the reactive control module. Another problem
with using a planner in real-time control applications
is that the planner's search process may not be able
to produce a complete plan within a given time limit.
Thus it is important for the planner to produce useful
results when it is interrupted at any time[3].

Autonomy also requires both planning and adaptive
control methods. Planning is required to produce an
e�ective response on the �rst and perhaps only time
that a given novel situation occurs. On the other hand,
adaptive (learning) methods assume that the training
conditions will be repeated over multiple trials. Adap-
tive techniques assume that, initially, some poor ac-
tions can be executed and then improved on subse-
quent trials, but planning is for generating a e�ective
behavior on the �rst try -without any training.

This paper extends our previous work on integrated
planning and control which was aimed at addressing
many of the above limitations. Previously, we designed
and implemented an integrated planning and reaction
system called: PROPEL - The PROgram Plan-
ning and Execution Language [15]. This archi-
tecture, shown in Figure 1, was designed to integrate
default and deliberate behavior.

Propel consists of a program library that con-
tains nondeterministic control programs, and a pro-

gram executor that uses heuristics to execute de-
fault programs in real-time, and a program simula-

tor that generates a search-space of disjunctive pro-
gram instances. This provides two distinct control
loops (sense-act circuits). The default control loop pro-
duces reactive default responses in routine situations,
while the deliberate control loop monitors and modi�es
the default programs for use in novel situations. The
use of two di�erent control loops to process routine
and novel responses can be found in a variety of both
neuropsychological and AI models [19, 11, 6].

A primary motivation for developing propel was a
desire to remove the language barrier. In propel, the
same program de�nitions are used by the real-time con-
troller (called the program executor), and also by
planner (called the program simulator). Propel's
architecture is uni�ed because the executor and the
simulator use shared data structures and algorithms
for interpreting a shared action representation. This
facilitates a tight integration between the program

executor and the program simulator that can
be exploited when planning a recovery from an execu-
tion failure.

The Program Executor produces rapid default re-
sponses in routine situations. These default programs,
called routines, are generated either by learning meth-
ods or by a human programmer. The routines are ex-
ecuted within guaranteed time limits by using heuris-
tics to make default selections at the nondeterministic
choice points that are encoded within a program.

The Program Library contains nondeterministic
programs that map sensory conditions into e�ector
command sequences. Each program in the library per-
forms its own sensing in a manner similar to the brain's
parallel feedback (sense-act) loops. This property is
also found in some robotic systems.

The key to propel's uni�ed architecture is the ac-
tion representation of the programs in this library. The
action representation is a dialect of Lisp that uses
nondeterministic assignment statements and subrou-
tine calls to represent choice points. This general pro-
gramming language extends the procedural expressive-
ness of AI action representations. The following pro-
gram, called Play-game, illustrates propel's action
representation.

The tight integration between propel's executor
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Figure 2: An autonomous control system

(Defprogram Play-game (board)
:Body
(moves  nil)
(Until (game-over? board)

Do (move  (choose-value (legal-moves board)
:preferences (best-moves)))

(board  (change-board move board))
(push move moves))

(print-msg \The solution is: " (reverse moves)))

and simulator is possible because they use identical
search engines to interpret this dialect of nondetermin-
istic lisp. The search tree is de�ned by nodes that cor-
respond to computational processes. The root node
of the tree corresponds to an initial program call, and
choice point statements generate branches in the search
tree. Each child node represents a distinct continua-
tion of its parent, based on the selection of a di�erent
choice. The search engine functions as a scheduler that
uses heuristics to bias the amount of cpu time allotted
to competing continuations. Propel uses both local
and global heuristics to bias the search. The primary
di�erence between the two search engines is that the
executer is constrained to choose only one path, but
the simulator can search and backtrack through a
space of many di�erent program instances.

The Program Simulator generates simulations of
programs in order to predict and correct upcoming er-
rors caused by novel operating conditions. It simulates
physical e�ector commands rather than actually exe-
cuting them in the real world. When an error occurs
in the simulation, the simulator backtracks through
the search space to identify a set of non-default choices
that are more e�ective. Simulation is only possible if
planning time is available between the time the error
is detected (or predicted) and the time it must be cor-
rected. If there is no time to plan, then default behav-
ior is the only possibility. To meet real-time deadlines,
the simulator can produce usable results when it is
interrupted at any time. The results are a form of Sit-
uated Control Rules[5] that advise the executor to
override default choice point selections.

The combined perspective

We now discuss a computer model, shown in Figure 2,
that was designed by combining the above neuropsy-
chological, control, and AI perspectives. Its purpose is
to extend AI planning methods to perform the func-
tions of the frontal lobe models in the context of real-
time, closed-loop control applications.

We start by noting that an autonomous system is
an interconnected system of physical processes (hard-
ware), with information processes (software). The in-
formation processes are being implemented as propel
application programs. All control systems must be able
to perform a set of standard operations, such as cook-
ing, bathing, and shopping for humans, or maintain-
ing a setpoint in a process control system. The pro-
pel programs shown in the previous section are exam-
ples of standard operations. An autonomous system
must also be able to detect and correct errors in its
own hardware and software with minimal assistance.
It is di�cult to segregate the self-monitoring and self-
programming functions because the hardware and soft-
ware error handling modules each have their own feed-
back loops (sense-act cycles). These programs, and the
standard operations, all respond to sensor conditions
in parallel. A learning component could also provide
a self-programming function, but it is not shown here
because it is outside the scope of our current work.

Propel provides the substrate for implementing
this model. This means that the software processes
in Figure 2 should be viewed as propel application
programs. They correspond to the contents of the pro-
gram library shown in Figure 1. Although Figure 1's
executor and simulator components are not shown
in Figure 2, their presence is implicitly part of the ar-
chitecture, allowing each program in Figure 2 to be
either simulated or executed.

In Figure 2, the solid arrows indicate standard data

ow relations between the programs. However, the
dashed arrows represent \meta-links", indicating that
the planner uses and modi�es the program de�nitions



of the other modules as data. The �gure shows that
the planner must detect and correct errors not only
in the standard operations programs but also in the
programs for hardware fault diagnosis, and the phys-
ical process models. The �gure also shows the triple
role of the physical process models. These are pro-
grams that encode mathematical models of physical
processes. First, these models are used to develop the
standard operations programs at design time. Then
at run time, the process models are used by both the
hardware and the software error handling programs for
simulation purposes.

Figure 2 also shows the mix of source disciplines.
The setpoint control programs and the physical pro-
cess models are contributions from the control sys-
tem perspective. The error detection and correction
modules are contributions from AI planning and diag-
nosis methods. The neuropsychological theories con-
tributed in a general manner to the three component
system for standard operations, self-monitoring and
self-programming, and they also contributed in speci�c
ways to the design of the planner's program critic and
editor modules.

Our focus is on the planner, whose operations can
be summarized as follows: The goal manager main-
tains a dynamic list of conditions (goals), along with
their associated positive and negative reward values.
The simulation manager initiates and updates the
simulation of programs in order to predict their e�ects.
The program critic evaluates those predictions to
detect potential program errors. The program ed-

itor corrects errors by modifying the program. We
now describe these planning components further.

The Goal Manager maintains a list that associates
conditions (goals), with positive or negative reward
values. We call this set of weighted goals the reward
structure. Conditions are also known as facts, predi-
cates and 
uents. The goal manager can add or re-
move goals, or change a goal's reward value. An ini-
tial set of top level goals for safety and health are �xed
at design time. New (sub)goals are then generated
when the program simulator generates hypotheti-
cal conditions that produce high rewards. Conditions
with positive rewards become goals of achievement or
maintenance, and those with a negative reward become
goals of prevention.

The Simulation Manager initiates and updates
the simulation of programs. When triggered by one of
the four events listed below, it invokes propel's pro-
gram simulator in order to predict the e�ects of a
given program. The program simulator searches
through the space of disjunctive program instances,
and returns a search record of the simulation's search
space. The search record is used by the simulation

manager to identify predicted conditions and it is also
passed to the program critic.

Event De�nition
goal Reward structure is modi�ed
execution Execution failure occurs
condition External conditions change
deadline Deadline approaches

A goal event occurs when the goal manager

modi�es its reward structure. Adding new goals will
trigger the initial simulation and evaluation of the de-
fault and alternative responses to that goal. Remov-
ing goals or changing their reward value will trigger
dependency-directed backtracking through the plan-
ner's search space. The execution event occurs when
a default program fails during execution. For exam-
ple, if obstacles block the path of a mobile robot, or
if it drops the co�ee mug its carrying. This event also
triggers dependency-directed backtracking. The con-
dition event indicates a con
ict between an observed
condition and a predicted condition. The predicted
conditions are extracted from the search records that
are produced the program simulator. When a con-
dition is predicted to be true, but is observed to be
false, then dependency directed backtracking is again
triggered. The deadline event occurs when a goal's
deadline moves within some threshold temporal dis-
tance. For instance, this event could trigger depen-
dency directed backtracking with updated sensor read-
ings 5 minutes before execution.
The Program Critic evaluates the simulator's

predictions to identify program errors that are caused
by novel conditions. The predictions are extracted
from a search record. Based on the frontal lobe mod-
els, we have de�ned the three types of program errors
shown below. We can now formally de�ne the term
novel condition to be any condition that causes a rou-
tine to have one of the following program errors.
Error De�nition
irrelevant Routine preconditions do not fail,

but no active goals are satis�ed
ineffective Routine preconditions fail
interfering Routine causes another program to fail

The critic evaluates the search record for each sim-
ulated program, and then rates the program as irrel-
evant, ineffective, or interfering if an error is
detected - or ok if there is no error. Although irrel-

evant routines are not discussed much in AI litera-
ture, they can occur when goals are compiled out from
a routine's preconditions, or if the external state is
misinterpreted due to limited or imperfect perception.
Ineffective routines are detected in AI integrated
planning and reaction systems like xfrm[18], ere[2]
propel[15], and Soar [11]. Interfering routines are
interactions between conjunctive goals in concurrent
programs. Interfering is a predicate that is a func-
tion of two or more programs, while ineffective is a
function of only one program.
The Program Editormodi�es default programs to

accommodate novel conditions. The table below shows
some of the many ways to modify programs.
Type De�nition
inhibit Override default start-condition that is true
start Override default start-condition that is false
continue Override default stop-condition that is true
stop Override default stop-condition that is false
choose Override default choice point selection
reorder Override default subroutine sequence

The �rst four of these types come directly from the
neuropsychological theories[16]. AI planning methods



(notably ere and propel) also motivated the start

and choose types. The start and stop conditions refer
to triggering preconditions and iteration termination
conditions respectively.

Status and Future Work

The propel substrate for our system is currently im-
plemented as described for Figure 1. This provides
our basic ability to simulate and execute propel pro-
grams. The components of Figure 2, however, are
still under development. Our current system sup-
ports a subset of the functionality required by the
full model. Currently, the simulation manager re-
sponds to goal and execution events. The pro-

gram critic can detect ineffective routines, and
the program editor can use choose and start to
override default programs. Our current e�orts are di-
rected towards extending the system to support the
rest of the model's full functionality. Implement-
ing the dependency-directed backtracking used by the
simulation manager is on the top of our agenda.
We expect to build on previous dependency-directed
mechanisms[22, 10] for this feature. The goal man-

ager also needs to be further developed.
Clearly many issues remain unresolved, and many

open research questions remain unanswered, such as:
Exactly how will the dependency-directed backtrack-
ing work, and will it be too slow? How is planning
time and execution time allocated? How can partially
ordered actions be represented and simulated? How
does the model relate to natural and arti�cial neural
nets? How are the programs learned? How can ab-
stract programs be represented and simulated?

Conclusion

We have presented a theory of autonomous action that
combines three di�erent perspectives. The combined
theory mixes the complementary contributions from
each perspective, and also extends the theories from
each perspective. The resulting single model has im-
proved our understanding of the nature of autonomy.
We hope this model de�nition provides a common lan-
guage and motivation for future interdisciplinary ef-
forts to improve upon this start.
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